Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4962-4974.DOI: 10.16085/j.issn.1000-6613.2021-0244
Previous Articles Next Articles
YU Suyun(), LIANG Lecheng, CUI Zhiming()
Received:
2021-02-01
Revised:
2021-03-30
Online:
2021-09-13
Published:
2021-09-05
Contact:
CUI Zhiming
通讯作者:
崔志明
作者简介:
余素云(1996—),女,硕士研究生,研究方向为电催化。E-mail:基金资助:
CLC Number:
YU Suyun, LIANG Lecheng, CUI Zhiming. Recent advances of nanostructured catalysts for methanol oxidation in acidic solution[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4962-4974.
余素云, 梁乐程, 崔志明. 酸性环境中甲醇电氧化催化剂的研究进展[J]. 化工进展, 2021, 40(9): 4962-4974.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0244
1 | ARICÒ A S, SRINIVASAN S, ANTONUCCI V. DMFCs: from fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2):133-161. |
2 | DEMIRCI U B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells[J]. Journal of Power Sources, 2007, 173(1):11-18. |
3 | NEUROCK M, JANIK M, WIECKOWSKI A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt[J]. Faraday Discussions, 2009, 140: 363-378. |
4 | CAO D, LU G Q, WIECKOWSKI A, et al. Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach[J]. The Journal of Physical Chemistry B, 2005, 109(23): 11622-11633. |
5 | PETRII O A. The progress in understanding the mechanisms of methanol and formic acid electrooxidation on platinum group metals (a review)[J]. Russian Journal of Electrochemistry, 2019, 55(1):1-33. |
6 | BAVAND R, WEI Q, ZHANG G, et al. PtRu alloy nanoparticles. 2. Chemical and electrochemical surface characterization for methanol oxidation[J]. The Journal of Physical Chemistry C, 2017, 121(41): 23120-23128. |
7 | DING Jiabao, ZHU Xing, BU Lingzheng, et al. Highly open rhombic dodecahedral PtCu nanoframes[J]. Chemical Communications, 2015, 51(47): 9722-9725. |
8 | GU Jun, ZHANG Yawen, TAO Franklin. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches[J]. Chemical Society Reviews, 2012, 41(24): 8050. |
9 | XIA Baoyu, WU Haobin, YAN Ya, et al. One-pot synthesis of platinum nanocubes on reduced graphene oxide with enhanced electrocatalytic activity[J]. Small, 2014, 10(12): 2336-2339. |
10 | ZHU Enbo, YAN Xucheng, WANG Shiyi, et al. Peptide-assisted 2-D assembly toward free-floating ultrathin platinum nanoplates as effective electrocatalysts[J]. Nano Letters, 2019, 19(6): 3730-3736. |
11 | HAO Yanfei, WANG Xudan, SHEN Jianfeng, et al. One-pot synthesis of single-crystal Pt nanoplates uniformly deposited on reduced graphene oxide, and their high activity and stability on the electrocalalytic oxidation of methanol[J]. Nanotechnology, 2016, 27(14): 145602. |
12 | LI Cuiling, SATO Takaaki, YAMAUCHI Yusuke. Electrochemical synthesis of one-dimensional mesoporous Pt nanorods using the assembly of surfactant micelles in confined space[J]. Angewandte Chemie International Edition, 2013, 52(31): 8050-8053. |
13 | WANG Shuangyin, JIANG Sanping, WANG Xin, et al. Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells[J]. Electrochimica Acta, 2011, 56(3): 1563-1569. |
14 | HO V T T, NGUYEN N G, PAN C J, et al. Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional Pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support[J]. Nano Energy, 2012, 1(5): 687-695. |
15 | LI Cuiling, MALGRAS Victor, ALSHEHERI S, et al. Electrochemical synthesis of mesoporous Pt nanowires with highly electrocatalytic activity toward methanol oxidation reaction[J]. Electrochimica Acta, 2015, 183:107-111. |
16 | ALIA Shun M, ZHANG Gang, KISAILUS David, et al. Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions[J]. Advanced Functional Materials, 2010, 20(21): 3742-3746. |
17 | CHENG Aozhi, WANG Yuan, MA Liang, et al. One-pot synthesis of three-dimensional Pt nanodendrites with enhanced methanol oxidation reaction and oxygen reduction reaction activities[J]. Nanotechnology, 2020, 31(43): 435403. |
18 | ZHANG Chengwei, XU Lianbin, SHAN Nannan, et al. Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres[J]. ACS Catalysis, 2014, 4(6): 1926-1930. |
19 | ZHOU Yang, HU Xianchao, XIAO Youjun, et al. Platinum nanoparticles supported on hollow mesoporous tungsten trioxide microsphere as electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2013, 111: 588-592. |
20 | YANG Cuizhen, JIANG Quanguo, LI Weihua, et al. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation[J]. Chemistry of Materials, 2019, 31(22): 9277-9287. |
21 | KAMYABI M A, EBRAHIMI-QARATAPEH K, MOHARRAMNEZHAD M. Silica template as a morphology-controlling agent for deposition of platinum nanostructure on 3D-Ni-foam and its superior electrocatalytic performance towards methanol oxidation[J]. Journal of Porous Materials, 2021, 28(2): 393-405. |
22 | BAI Gailing, LIU Chang, GAO Zhe, et al. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): e1902951. |
23 | ZHANG Yiqiong, SHI Yongliang, CHEN Ru, et al. Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation[J]. Journal of Materials Chemistry A, 2018, 6(45): 23028-23033. |
24 | CUI Zhiming, JIANG Sanping, LI Changming. Highly dispersed MoOx on carbon nanotube as support for high performance Pt catalyst towards methanol oxidation[J]. Chemical Communications, 2011, 47(29): 8418-8420. |
25 | TRAN N D, FARNESI C M, FABRIS S. Probing the reactivity of Pt/ceria nanocatalysts toward methanol oxidation: from ionic single-atom sites to metallic nanoparticles[J]. The Journal of Physical Chemistry C, 2018, 122(31): 17917-17927. |
26 | QI Jian, CHEN Jie, LI Guodong, et al. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation[J]. Energy & Environmental Science, 2012, 5(10): 8937-8941. |
27 | YANG Siyuan, ZHAO Chen, GE Chunyu, et al. Ternary Pt-Ru-SnO2 hybrid architectures: unique carbon-mediated 1-D configuration and their electrocatalytic activity to methanol oxidation[J]. Journal of Materials Chemistry, 2012, 22(15): 7104-7107. |
28 | ZHOU Yawei, CHEN Yafeng, JIANG Kun, et al. Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst[J]. Applied Catalysis B: Environmental, 2021, 280: 119393. |
29 | ANTOLINI Ermete. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: a short review[J]. Applied Catalysis B: Environmental, 2018, 237: 491-503. |
30 | YAN Haijing, TIAN Chungui, SUN Li, et al. Small-sized and high-dispersed WN from [SiO4(W3O9)4]4- clusters loading on GO-derived graphene as promising carriers for methanol electro-oxidation[J]. Energy & Environmental Science, 2014, 7(6): 1939-1949. |
31 | ZHANG Wenyao, YAO Qiushi, JIANG Gaopeng, et al. Molecular trapping strategy to stabilize subnanometric Pt clusters for highly active electrocatalysis[J]. ACS Catalysis, 2019, 9(12): 11603-11613. |
32 | CHANG Jinfa, FENG Ligang, JIANG Kun, et al. Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells[J]. Journal of Materials Chemistry A, 2016, 4(47): 18607-18613. |
33 | CHANG Jinfa, FENG Ligang, LIU Changpeng, et al. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy & Environmental Science, 2014, 7(5): 1628. |
34 | LIU Hui, YANG Dawen, BAO Yufei, et al. One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction[J]. Journal of Power Sources, 2019, 434: 226754. |
35 | DUAN Yaqiang, SUN Ye, WANG Lei, et al. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts[J]. Journal of Materials Chemistry A, 2016, 4(20): 7674-7682. |
36 | DUAN Yaqiang, SUN Ye, PAN Siyu, et al. Self-stable WP/C support with excellent cocatalytic functionality for Pt: enhanced catalytic activity and durability for methanol electro-oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 33572-33582. |
37 | DING Junjie, HU Weiling, MA Li, et al. Facile construction of mesoporous carbon enclosed with NiCoPx nanoparticles for desirable Pt-based catalyst support in methanol oxidation[J]. Journal of Power Sources, 2021, 481: 228888. |
38 | YOU Hongjun, ZHANG Fangling, LIU Zhen, et al. Free-standing Pt-Au hollow nanourchins with enhanced activity and stability for catalytic methanol oxidation[J]. ACS Catalysis, 2014, 4(9): 2829-2835. |
39 | YAMAUCHI Yusuke, TONEGAWA Akihisa, KOMATSU Masaki, et al. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance[J]. Journal of the American Chemical Society, 2012, 134(11): 5100-5109. |
40 | ZHANG Rui, XIA Wenfang, KANG Wenjun, et al. Methanol oxidation reaction performance on graphene-supported PtAg alloy nanocatalyst: contrastive study of electronic and geometric effects induced from Ag doping[J]. ChemistrySelect, 2018, 3(13): 3615-3620. |
41 | YAO Wenqing, JIANG Xian, LI Meng, et al. Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol[J]. Applied Catalysis B: Environmental, 2021, 282: 119595. |
42 | PENG Xiuying, LU Dongtao, QIN Yingnan, et al. Pt-on-Pd dendritic nanosheets with enhanced bifunctional fuel cell catalytic performance[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30336-30342. |
43 | BAI Zhiyong, LUO Juanjuan, MING Dongquan, et al. High active and durable N-doped carbon spheres-supported flowerlike PtPd nanoparticles for electrochemical oxidation of liquid alcohols[J]. Electrochimica Acta, 2020, 356: 136794. |
44 | LU Qingqing, HUANG Jianshe, HAN Ce, et al. Facile synthesis of composition-tunable PtRh nanosponges for methanol oxidation reaction[J]. Electrochimica Acta, 2018, 266: 305-311. |
45 | BHUVANENDRAN Narayanamoorthy, RAVICHANDRAN Sabarinathan, ZHANG Weiqi, et al. Highly efficient methanol oxidation on durable PtxIr/MWCNT catalysts for direct methanol fuel cell applications[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6447-6460. |
46 | KWON S, HAM D J, KIM T, et al. Active methanol oxidation reaction by enhanced CO tolerance on bimetallic Pt/Ir electrocatalysts using electronic and bifunctional effects[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39581-39589. |
47 | ELBERT Katherine, HU Jue, MA Zhong, et al. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core[J]. ACS Catalysis, 2015, 5(11): 6764-6772. |
48 | XIE Jin, ZHANG Qinghua, GU Lin, et al. Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation[J]. Nano Energy, 2016, 21: 247-257. |
49 | ZHANG Junming, QU Ximing, HAN Yu, et al. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: enhanced catalytic performance[J]. 2020, 263:118345. |
50 | SHI Yandi, ZHU Wenxiang, SHI Huixian, et al. Mesocrystal PtRu supported on reduced graphene oxide as catalysts for methanol oxidation reaction[J]. Journal of Colloid and Interface Science, 2019, 557: 729-736. |
51 | ZHANG Shuping, RONG Hongpan, YANG Tianyi, et al. Ultrafine PtRu dilute alloy nanodendrites for enhanced electrocatalytic methanol oxidation[J]. Chemistry, 2020, 26(18): 4025-4031. |
52 | ZHANG Linwei, GAO Ang, LIU Yan, et al. PtRu nanoparticles dispersed on nitrogen-doped carbon nanohorns as an efficient electrocatalyst for methanol oxidation reaction[J]. Electrochimica Acta, 2014, 132: 416-422. |
53 | ZHANG Yunlong, LI Jialong, ZHAO Lei, et al. Nitrogen doped carbon coated Mo modified TiO2 nanowires (NC@MTNWs-FI) with functionalized interfacial as advanced PtRu catalyst support for methanol electrooxidation[J]. Electrochimica Acta, 2020, 331: 135410. |
54 | BAI Xiaoxiao, GENG Jiarun, ZHAO Shuo, et al. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23046-23050. |
55 | WANG Yajing, WANG Jiankang, HAN Guokang, et al. Superior catalytic performance and CO tolerance of Ru@Pt/C-TiO2 electrocatalyst toward methanol oxidation reaction[J]. Applied Surface Science, 2019, 473: 943-950. |
56 | KLEIN Jens, ARGAST Fabian, ENGSTFELD Albert K, et al. Electro-oxidation of methanol on Ru-core Pt-shell type model electrodes[J]. Electrochimica Acta, 2019, 311: 244-254. |
57 | CAO Lin, SCHEIBA Frieder, ROTH Christina, et al. Novel nanocomposite Pt/RuO2⋅x H2O/carbon nanotube catalysts for direct methanol fuel cells[J]. Angewandte Chemie International Edition, 2006, 45(32): 5315-5319. |
58 | ALAYOGLU Selim, NILEKAR Anand U, MAVRIKAKIS Manos, et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Nature Materials, 2008, 7(4): 333-338. |
59 | ZHAO Weiyue, NI Bing, YUAN Qiang, et al. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0nm particles for methanol oxidation[J]. Advanced Energy Materials, 2017, 7(8): 1601593. |
60 | HUANG Liang, ZHANG Xueping, WANG Qingqing, et al. Shape-control of Pt-Ru nanocrystals: tuning surface structure for enhanced electrocatalytic methanol oxidation[J]. Journal of the American Chemical Society, 2018, 140(3): 1142-1147. |
61 | ZENG Rui, YANG Yao, SHEN Tao, et al. Methanol oxidation using ternary ordered intermetallic electrocatalysts: a DEMS study[J]. ACS Catalysis, 2020, 10(1): 770-776. |
62 | ZHANG Yangping, GAO Fei, SONG Tongxin, et al. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis[J]. Nanoscale, 2019, 11(33): 15561-15566. |
63 | XIA Baoyu, WU Haobin, LI Nan, et al. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties[J]. Angewandte Chemie International Edition, 2015, 54(12): 3797-3801. |
64 | LU Qingqing, SUN Litai, ZHAO Xue, et al. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction[J]. Nano Research, 2018, 11(5): 2562-2572. |
65 | TENG X A, SHAN A X, ZHU Y C, et al. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon[J]. Electrochimica Acta, 2020, 353: 136542. |
66 | SHAN Aixian, HUANG Shuoyuan, ZHAO Haofei, et al. Atomic-scaled surface engineering Ni-Pt nanoalloys towards enhanced catalytic efficiency for methanol oxidation reaction[J]. Nano Research, 2020, 13(11): 3088-3097. |
67 | LI Chaozhong, LIU Taiyang, HE Ting, et al. Composition-driven shape evolution to Cu-rich PtCu octahedral alloy nanocrystals as superior bifunctional catalysts for methanol oxidation and oxygen reduction reaction[J]. Nanoscale, 2018, 10(10): 4670-4674. |
68 | SHI Yan, FANG Yan, ZHANG Genlei, et al. Hollow PtCu nanorings with high performance for the methanol oxidation reaction and their enhanced durability by using trace Ir[J]. Journal of Materials Chemistry A, 2020, 8(7): 3795-3802. |
69 | LONG Xiangyu, YIN Ping, LEI Ting, et al. Methanol electro-oxidation on Cu@Pt/C core-shell catalyst derived from Cu-MOF[J]. Applied Catalysis B: Environmental, 2020, 260: 118187. |
70 | PEI Jiajing, MAO Junjie, LIANG Xin, et al. Ultrathin Pt-Zn nanowires: high-performance catalysts for electrooxidation of methanol and formic acid[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 77-81. |
71 | WANG Lijuan, TIAN Xinlong, XU Yangyang, et al. Engineering one-dimensional and hierarchical PtFe alloy assemblies towards durable methanol electrooxidation[J]. Journal of Materials Chemistry A, 2019, 7(21): 13090-13095. |
72 | LI Zhijuan, JIANG Xian, WANG Xiaoru, et al. Concave PtCo nanocrosses for methanol oxidation reaction[J]. Applied Catalysis B: Environmental, 2020, 277: 119135. |
73 | LIANG Yanxia, SUN Yingjun, WANG Xinyu, et al. High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate[J]. Nanoscale, 2018, 10(24): 11357-11364. |
74 | CHEN G J, SHAN H Q, LI Y, et al. Hollow PtCu nanoparticles encapsulated into a carbon shell via mild annealing of Cu metal-organic frameworks[J]. Journal of Materials Chemistry A, 2020, 8(20): 10337-10345. |
75 | CUI Zhiming, CHEN Hao, ZHAO Mengtian, et al. Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts[J]. Journal of the American Chemical Society, 2014, 136(29): 10206-10209. |
76 | MAKSIMUK Sean, YANG Shengchun, PENG Zhenmeng, et al. Synthesis and characterization of ordered intermetallic PtPb nanorods[J]. Journal of the American Chemical Society, 2007, 129(28): 8684-8685. |
77 | KANG Y, PYO J B, YE X, et al. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals[J]. ACS Nano, 2012, 6(6): 5642-5647. |
78 | QIN Yingnan, LUO Mingchuan, SUN Yingjun, et al. Intermetallic hcp-PtBi/fcc-Pt core/shell nanoplates enable efficient bifunctional oxygen reduction and methanol oxidation electrocatalysis[J]. ACS Catalysis, 2018, 8(6): 5581-5590. |
79 | CHEN Wei, LEI Zhao, ZENG Tang, et al. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction[J]. Nanoscale, 2019, 11(42): 19895-19902. |
80 | FENG Quanchen, ZHAO Shu, HE Dongsheng, et al. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga[J]. Journal of the American Chemical Society, 2018, 140(8): 2773-2776. |
81 | Amado VELÁZQUEZ-PALENZUELA, CENTELLAS Francesc, GARRIDO José Antonio, et al. Structural properties of unsupported Pt-Ru nanoparticles as anodic catalyst for proton exchange membrane fuel cells[J]. The Journal of Physical Chemistry C, 2010, 114(10): 4399-4407. |
82 | NARAYANAMOORTHY B, DATTA K K R, ESWARAMOORTHY M, et al. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells[J]. ACS Catalysis, 2014, 4(10): 3621-3629. |
83 | HUANG Junjie, YANG Hui, HUANG Qinghong, et al. Methanol oxidation on carbon-supported Pt-Os bimetallic nanoparticle electrocatalysts[J]. Journal of the Electrochemical Society, 2004, 151(11): A1810. |
84 | LU Yan, WANG Wei, CHEN Xiaowei, et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation[J]. Nano Research, 2019, 12(3): 651-657. |
85 | WANG Qingmei, CHEN Siguo, LAN Huiying, et al. Thermally driven interfacial diffusion synthesis of nitrogen-doped carbon confined trimetallic Pt3CoRu composites for the methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2019, 7(30): 18143-18149. |
86 | WANG Qingmei, CHEN Siguo, LI Pan, et al. Surface Ru enriched structurally ordered intermetallic PtFe@PtRuFe core-shell nanostructure boosts methanol oxidation reaction catalysis[J]. Applied Catalysis B: Environmental, 2019, 252: 120-127. |
87 | YANG Shaohan, LI Shuna, SONG Lianghao, et al. Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties[J]. Nano Research, 2019, 12(11): 2881-2888. |
88 | WANG Cheng, XU Hui, GAO Fei, et al. High-density surface protuberances endow ternary PtFeSn nanowires with high catalytic performance for efficient alcohol electro-oxidation[J]. Nanoscale, 2019, 11(39): 18176-18182. |
89 | ZHANG Tao, BAI Yu, SUN Yiqiang, et al. Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity[J]. Journal of Materials Chemistry A, 2018, 6(28): 13735-13742. |
90 | CHENG Na, ZHANG Ling, JIANG Hao, et al. Locally-ordered PtNiPb ternary nano-pompons as efficient bifunctional oxygen reduction and methanol oxidation catalysts[J]. Nanoscale, 2019, 11(36): 16945-16953. |
91 | WANG Zhen, HUANG Lei, TIAN Zhiqun, et al. The controllable growth of PtCuRh rhombic dodecahedral nanoframes as efficient catalysts for alcohol electrochemical oxidation[J]. Journal of Materials Chemistry A, 2019, 7(31): 18619-18625. |
92 | AHMAD Y H, EL-SAYED H A, MOHAMED A T, et al. Rational one-pot synthesis of ternary PtIrCu nanocrystals as robust electrocatalyst for methanol oxidation reaction[J]. Applied Surface Science, 2020, 534: 147617. |
93 | ZHANG Qiqi, LIU Jialong, XIA Tianyu, et al. Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells[J]. Nano Research, 2019, 12(10): 2520-2527. |
94 | ZHU Jing, YANG Yao, CHEN Lingxuan, et al. Copper-induced formation of structurally ordered Pt-Fe-Cu ternary intermetallic electrocatalysts with tunable phase structure and improved stability[J]. Chemistry of Materials, 2018, 30(17): 5987-5995. |
95 | YANG Long, LI Guoqiang, GE Junjie, et al. TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2018, 6(35): 16798-16803. |
96 | MA Siyue, LI Huihui, HU Bicheng, et al. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity[J]. Journal of the American Chemical Society, 2017, 139(16): 5890-5895. |
97 | WANG W, CHEN X W, ZHANG X, et al. Quatermetallic Pt-based ultrathin nanowires intensified by Rh enable highly active and robust electrocatalysts for methanol oxidation[J]. Nano Energy, 2020, 71: 104623. |
98 | GAO Wei, LI Xiyan, LI Yunhui, et al. Facile synthesis of Pt3Sn/graphene nanocomposites and their catalysis for electro-oxidation of methanol[J]. CrystEngComm, 2012, 14(21): 7137-7139. |
99 | LIU Yi, LI Dongguo, STAMENKOVIC Vojislav R, et al. Synthesis of Pt3Sn alloy nanoparticles and their catalysis for electro-oxidation of CO and methanol[J]. ACS Catalysis, 2011, 1(12): 1719-1723. |
100 | LU Xiaoqing, DENG Zhigang, GUO Chen, et al. Methanol oxidation on Pt3Sn(111) for direct methanol fuel cells: methanol decomposition[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12194-12204. |
101 | WANG Liang, WU Wei, LEI Zhao, et al. High-performance alcohol electrooxidation on Pt3Sn-SnO2 nanocatalysts synthesized through the transformation of Pt-Sn nanoparticles[J]. Journal of Materials Chemistry A, 2020, 8(2): 592-598. |
102 | KWON Yongmin, KIM Yena, WHANG Youngjoo, et al. One-pot production of ceria nanosheet-supported PtNi alloy nanodendrites with high catalytic performance toward methanol oxidation and oxygen reduction[J]. Journal of Materials Chemistry A, 2020, 8(48): 25842-25849. |
103 | SEBASTIÁN D, STASSI A, SIRACUSANO S, et al. Influence of metal oxide additives on the activity and stability of PtRu/C for methanol electro-oxidation[J]. Journal of the Electrochemical Society, 2015, 162(7): F713-F717. |
104 | QUOC PHAM H, THIEN HUYNH T, TRUONG NGUYEN S T, et al. Superior CO-tolerance and stability toward alcohol electro-oxidation reaction of 1D-bimetallic platinum-cobalt nanowires on Tungsten-modified anatase TiO2 nanostructure[J]. Fuel, 2020, 276: 118078. |
105 | DIMITROVA Nina, DHIFALLAH Marwa, MINEVA Tzonka, et al. High performance of PtCu@TiO2 nanocatalysts toward methanol oxidation reaction: from synthesis to molecular picture insight[J]. RSC Advances, 2019, 9(4): 2073-2080. |
106 | ZHANG Jingfang, LI Kaidan, ZHANG Bin. Synthesis of dendritic Pt-Ni-P alloy nanoparticles with enhanced electrocatalytic properties[J]. Chemical Communications, 2015, 51(60): 12012-12015. |
107 | DING Liangxin, WANG Anliang, LI Gaoren, et al. Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation[J]. Journal of the American Chemical Society, 2012, 134(13): 5730-5733. |
108 | ZHANG Lili, WEI Meng, WANG Suqing, et al. Highly stable PtP alloy nanotube arrays as a catalyst for the oxygen reduction reaction in acidic medium[J]. Chemical Science, 2015, 6(5): 3211-3216. |
109 | ZHANG Lili, DING Liangxin, CHEN Hongbin, et al. Self-supported PtAuP alloy nanotube arrays with enhanced activity and stability for methanol electro-oxidation[J]. Small, 2017, 13(17): 1604000. |
110 | LIN Mengliang, Manyin LO, MOU Chungyuan. PtRuP nanoparticles supported on mesoporous carbon thin film as highly active anode materials for direct methanol fuel cell[J]. Catalysis Today, 2011, 160(1): 109-115. |
111 | LI Mengmeng, FANG Yan, ZHANG Genlei, et al. Carbon-supported Pt5P2 nanoparticles used as a high-performance electrocatalyst for the methanol oxidation reaction[J]. Journal of Materials Chemistry A.2020, 8(20): 10433-10438 |
112 | DENG Kai, XU You, YANG Dandan, et al. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation[J]. Journal of Materials Chemistry A, 2019, 7(16): 9791-9797. |
113 | WANG Fulong, FANG Bo, YU Xu, et al. Coupling ultrafine Pt nanocrystals over the Fe2P surface as a robust catalyst for alcohol fuel electro-oxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9496-9503. |
114 | BAO Yufei, WANG Fulong, GU Xiaocong, et al. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation[J]. Nanoscale, 2019, 11(40): 18866-18873. |
115 | YANG Zhenzhen, SHI Yan, WANG Xianshun, et al. Boron as a superior activator for Pt anode catalyst in direct alcohol fuel cell[J]. Journal of Power Sources, 2019, 431: 125-134. |
116 | FAN Jingjing, FAN Youjun, WANG Ruixiang, et al. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction[J]. Journal of Materials Chemistry A, 2017, 5(36): 19467-19475. |
117 | SUN Yongrong, DU Chunyu, HAN Guokang, et al. Boron, nitrogen co-doped graphene: a superior electrocatalyst support and enhancing mechanism for methanol electrooxidation[J]. Electrochimica Acta, 2016, 212: 313-321. |
118 | AN Meichen, DU Lei, DU Chunyu, et al. Pt nanoparticles supported by sulfur and phosphorus co-doped graphene as highly active catalyst for acidic methanol electrooxidation[J]. Electrochimica Acta, 2018, 285: 202-213. |
119 | CHANG Ying, YUAN Conghui, LI Yuntong, et al. Controllable fabrication of a N and B co-doped carbon shell on the surface of TiO2 as a support for boosting the electrochemical performances[J]. Journal of Materials Chemistry A, 2017, 5(4): 1672-1678. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |