Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6729-6737.DOI: 10.16085/j.issn.1000-6613.2021-0229
• Materials science and technology • Previous Articles Next Articles
MA Guanxiang(), YANG Ling, WANG Ting-jie()
Received:
2021-01-31
Revised:
2021-04-20
Online:
2021-12-21
Published:
2021-12-05
Contact:
WANG Ting-jie
通讯作者:
王亭杰
作者简介:
马冠香(1987—),博士,研究方向为纳米复合材料。E-mail: CLC Number:
MA Guanxiang, YANG Ling, WANG Ting-jie. Surface modification of silica nanoparticles using polydopamine[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6729-6737.
马冠香, 杨令, 王亭杰. 聚多巴胺修饰纳米SiO2颗粒[J]. 化工进展, 2021, 40(12): 6729-6737.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0229
1 | CIRIMINNA R, FIDALGO A, PANDARUS V, et al. The sol-gel route to advanced silica-based materials and recent applications[J]. Chemical Reviews, 2013, 113(8): 6592-6620. |
2 | LEE M-H, DEKA J R, CHENG C-J, et al. Synthesis of highly dispersed ultra-small cobalt nanoparticles within the cage-type mesopores of 3D cubic mesoporous silica via double agent eduction method for catalytic hydrogen generation[J]. Applied Surface Science, 2019, 470: 764-772. |
3 | SHEN Z C, WEN H J, ZHOU H J, et al. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release[J]. Materials Science & Engineering C: Materials for Biological Applications, 2019, 105: 110073. |
4 | ALARCOS N, COHEN B, ZIÓŁEK M, et al. Photochemistry and photophysics in silica-based materials: ultrafast and single molecule spectroscopy observation[J]. Chemical Reviews, 2017, 117(22): 13639-13720. |
5 | ZOU H, WU S S, SHEN J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications[J]. Chemical Reviews, 2008, 108(9): 3893-3957. |
6 | RIMOLA A, COSTA D, SODUPE M, et al. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments[J]. Chemical Reviews, 2013, 113(6): 4216-4313. |
7 | WAITE J H. Mussel power[J]. Nature Materials, 2008, 7(1): 8-9. |
8 | LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. |
9 | JIN A T, WANG Y T, LIN K L, et al. Nanoparticles modified by polydopamine: working as “drug” carriers[J]. Bioactive Materials, 2020, 5(3): 522-541. |
10 | HAUSER D, SEPTIADI D, TURNER J, et al. From bioinspired glue to medicine: polydopamine as a biomedical material[J]. Materials, 2020, 13(7): 1730. |
11 | LIU M, JIANG W Q, CHEN Q, et al. A facile one-step method to synthesize SiO2@polydopamine core-shell nanospheres for shear thickening fluid[J]. RSC Advances, 2016, 6(35): 29279-29287. |
12 | HO C C, DING S J. Novel SiO2/PDA hybrid coatings to promote osteoblast-like cell expression on titanium implants[J]. Journal of Materials Chemistry B, 2015, 3(13): 2698-2707. |
13 | RYU J H, MESSERSMITH P B, LEE H. Polydopamine surface chemistry: a decade of discovery[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7523-7540. |
14 | BARCLAY T G, HEGAB H M, CLARKE S R, et al. Versatile surface modification using polydopamine and related polycatecholamines: chemistry, structure, and applications[J]. Advanced Materials Interfaces, 2017, 4(19): 1601192. |
15 | VECCHIA N F D, AVOLIO R, ALFE M, et al. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point[J]. Advanced Functional Materials, 2013, 23(10): 1331-1340. |
16 | DREYER D R, MILLER D J, FREEMAN B D, et al. Elucidating the structure of poly(dopamine)[J]. Langmuir, 2012, 28(15): 6428-6435. |
17 | LIEBSCHER J, MRÓWCZYŃSKI R, SCHEIDT H A, et al. Structure of polydopamine: a never-ending story?[J]. Langmuir, 2013, 29(33): 10539-10548. |
18 | D’ISCHIA M, NAPOLITANO A, BALL V, et al. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy[J]. Accounts of Chemical Research, 2014, 47(12): 3541-3550. |
19 | HONG S, NA Y S, CHOI S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation[J]. Advanced Functional Materials, 2012, 22(22): 4711-4717. |
20 | HONG D, BAE K, HONG S P, et al. Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates[J]. Chemical Communications, 2014, 50(79): 11649-11652. |
21 | HAN L, LU X, WANG M H, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small, 2017, 13(2): 1601916. |
22 | SCHLAICH C, WEI Q, HAAG R. Mussel-inspired polyglycerol coatings with controlled wettability: from superhydrophilic to superhydrophobic surface coatings[J]. Langmuir, 2017, 33(38): 9508-9520. |
23 | WANG Y, SU J, LI T, et al. A novel UV-shielding and transparent polymer film: when bioinspired dopamine-melanin hollow nanoparticles join polymers[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36281-36289. |
24 | HAN L, LIU K Z, WANG M H, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance[J]. Advanced Functional Materials, 2018, 28(3): 1704195. |
25 | LI H, JIA Y, PENG H N, et al. Recent developments in dopamine-based materials for cancer diagnosis and therapy[J]. Advances in Colloid and Interface Science, 2018, 252: 1-20. |
26 | YU B, WANG D A, YE Q, et al. Robust polydopamine nano/microcapsules and their loading and release behavior[J]. Chemical Communications, 2009, 44: 6789-6791. |
27 | DING L, ZHU X B, WANG Y L, et al. Intracellular fate of nanoparticles with polydopamine surface engineering and a novel strategy for exocytosis-inhibiting, lysosome impairment-based cancer therapy[J]. Nano Letters, 2017, 17(11): 6790-6801. |
28 | WANG J T, BAI H J, ZHANG H Q, et al. Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles[J]. Electrochimica Acta, 2015, 152: 443-455. |
29 | TRIPATHI B P, DUBEY N C, SUBAIR R, et al. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles[J]. RSC Advances, 2016, 6(6): 4448-4457. |
30 | LYU Y, DU Y, QIU W Z, et al. Nanocomposite membranes via the codeposition of polydopamine/polyethylenimine with silica nanoparticles for enhanced mechanical strength and high water permeability[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2966-2972. |
31 | ZOTTI A, ZUPPOLINI S, BORRIELLO A, et al. Effect of SiO2@polydopamine core/shell nanoparticles as multifunctional filler for an aeronautical epoxy resin[J]. Materials Today-Proceedings, 2021, 34: 117-120. |
32 | ZOTTI A, ZUPPOLINI S, BORRIELLO A, et al. Thermal and mechanical characterization of an aeronautical graded epoxy resin loaded with hybrid nanoparticles[J]. Nanomaterials, 2020, 10(7): 1388. |
33 | LIU P M, CHANG W Y, JU L S, et al. Bioinspired noniridescent structural color with hidden patterns for anticounterfeiting[J]. ACS Applied Nano Materials, 2019, 2(9): 5752-5760. |
34 | XUE H J, ZHAO J J, ZHOU Q, et al. Boosting the sensitivity of a photoelectrochemical immunoassay by using SiO2@polydopamine core-shell nanoparticles as a highly efficient quencher[J]. ACS Applied Nano Materials, 2019, 2(3): 1579-1588. |
35 | DENG X X, WU S, LI Z P, et al. Ratiometric detection of DNA and protein in serum by a universal tripyridinyl RuII complex-encapsulated SiO2@polydopamine fluorescence nanoplatform[J]. Analytical Chemistry, 2020, 92(24): 15908-15915. |
36 | RAZAVI M, PRIMAVERA R, KEVADIYA B D, et al. Controlled nutrient delivery to pancreatic islets using polydopamine-coated mesoporous silica nanoparticles[J]. Nano Letters, 2020, 20(10): 7220-7229. |
37 | RAZAVI M, HU S, THAKOR A S. A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy[J]. Journal of Biomedical Materials Research Part A, 2018, 106(8): 2213-2228. |
38 | C-C HO, DING S-J. Dopamine-induced silica-polydopamine hybrids with controllable morphology[J]. Chemical Communications, 2014, 50(27): 3602-3605. |
39 | NOONAN O, ZHANG H W, SONG H, et al. In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica-polymer composites for ultra-high level in-cavity adsorption[J]. Journal of Materials Chemistry A, 2016, 4(23): 9063-9071. |
40 | LE-MASURIER S P, GODY G, PERRIER S, et al. One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and “grafting from” RAFT polymerization[J]. Polymer Chemistry, 2014, 5(8): 2816-2823. |
41 | LE-MASURIER S P, DUONG H T T, BOYER C, et al. Surface modification of polydopamine coated particles via glycopolymer brush synthesis for protein binding and FLIM testing[J]. Polymer Chemistry, 2015, 6(13): 2504-2511. |
42 | HENG C N, LIU M, WANG K, et al. Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites[J]. Ceramics International, 2015, 41(10): 15075-15082. |
43 | HENG C N, LIU M Y, WANG K, et al. Fabrication of silica nanoparticle based polymer nanocomposites via a combination of mussel inspired chemistry and SET-LRP[J]. RSC Advances, 2015, 5(111): 91308-91314. |
44 | TIAN J W, ZHANG H X, LIU M Y, et al. A bioinspired strategy for surface modification of silica nanoparticles[J]. Applied Surface Science, 2015, 357: 1996-2003. |
45 | HUANG Q, LIU M Y, CHEN J Y, et al. Mussel inspired preparation of functional silica nanocomposites for environmental adsorption applications[J]. Applied Surface Science, 2016, 387: 285-293. |
46 | HUANG Q, LIU M Y, WAN Q, et al. Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for highly efficient removal of environmental pollutants[J]. Materials Chemistry and Physics, 2017, 193: 501-511. |
47 | HUANG Q, LIU M Y, MAO L C, et al. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: characterization and enhanced removal of organic dye[J]. Journal of Colloid and Interface Science, 2017, 499: 170-179. |
48 | WANG W C, JIANG Y, LIAO Y, et al. Fabrication of silver-coated silica microspheres through mussel-inspired surface functionalization[J]. Journal of Colloid and Interface Science, 2011, 358(2): 567-574. |
49 | ZHANG L, WU J J, WANG Y X, et al. Combination of bioinspiration: a general route to superhydrophobic particles[J]. Journal of the American Chemical Society, 2012, 134(24): 9879-9881. |
50 | DONG Y H, LIU T, SUN S B, et al. Preparation and characterization of SiO2/polydopamine/Ag nanocomposites with long-term antibacterial activity[J]. Ceramics International, 2014, 40(4): 5605-5609. |
51 | YANG D, TIAN M, WANG W C, et al. Controllable dielectric and electrical performance of polymer composites with novel core/shell-structured conductive particles through biomimetic method[J]. Electrochimica Acta, 2013, 87: 9-17. |
52 | GUO Z W, XUE J Z, LIU T, et al. Antibacterial mechanisms of silica/polydopamine/silver nanoparticles against gram positive and gram negative bacteria[J]. Micro & Nano Letters, 2014, 9(3): 210-214. |
53 | SHI X W, ZOU J F, CHEN X J, et al. The effect of size on the surface enhanced raman scattering property of SiO2@PDA@AgNP core-shell-satellite nanocomposite[J]. Chemistry Letters, 2020, 49(5): 534-537. |
54 | LAI G S, ZHANG H L, YONG J W, et al. In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay[J]. Biosensors & Bioelectronics, 2013, 47: 178-183. |
55 | BAO C Z, FAN D W, LIU X, et al. A signal-off type photoelectrochemical immunosensor for the ultrasensitive detection of procalcitonin: Ru(bpy)32+ and Bi2S3 co-sensitized ZnTiO3/TiO2 polyhedra as matrix and dual inhibition by SiO2/PDA-Au[J]. Biosensors and Bioelectronics, 2019, 142: 111513. |
56 | XING B; ZHU W J, ZHENG X P, et al. Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for insulin detection[J]. Sensors and Actuators B-Chemical, 2018, 265: 403-411. |
57 | 闫孟飞, 韩霞, 刘洪来. 基于聚多巴胺原位还原修饰的SiO2@PDA@Au复合材料的制备及催化性能[J]. 华东理工大学学报(自然科学版), 2017, 43(1): 16-22, 35. |
YAN M F, HAN X, LIU H L. Synthesis and catalytic properties of SiO2@PDA@Au composites based on polydopamine[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2017, 43(1): 16-22, 35. | |
58 | VEISI H, NIKSERESHT A, MOHAMMADI S, et al. Facile in-situ synthesis and deposition of monodisperse palladium nanoparticles on polydopamine-functionalized silica gel as a heterogeneous and recyclable nanocatalyst for aerobic oxidation of alcohols[J]. Chinese Journal of Catalysis, 2018, 39 (6): 1044-1050. |
[1] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[2] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[3] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[4] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[5] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[6] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[7] | LI Bogeng, LUO Yingwu, LIU Pingwei. Consideration on research content and method of polymer product engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3905-3909. |
[8] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[9] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[10] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[11] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
[12] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[13] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[14] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[15] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |