Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6897-6906.DOI: 10.16085/j.issn.1000-6613.2020-2565
• Resources and environmental engineering • Previous Articles Next Articles
LI Dongmei(), WU Danping, WU Min(), PAN Bo
Received:
2020-12-25
Revised:
2021-03-17
Online:
2021-12-21
Published:
2021-12-05
Contact:
WU Min
通讯作者:
吴敏
作者简介:
李东梅(1996—),女,硕士研究生,研究方向为污水处理厂温室气体的排放。E-mail:基金资助:
CLC Number:
LI Dongmei, WU Danping, WU Min, PAN Bo. Influence of operating parameters on greenhouse gas emission of sewage treatment plants[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6897-6906.
李东梅, 吴丹萍, 吴敏, 潘波. 污水处理厂运行工况对温室气体排放的影响[J]. 化工进展, 2021, 40(12): 6897-6906.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2565
主体工艺 | 进水氮含量/mg·L-1 | 排放因子(EF) | 参考文献 |
---|---|---|---|
活性污泥法(AS) | — | 0.001 | [ |
硝化反硝化 | TKN=1265±41(污泥上清液) | 0.017 | [ |
厌氧氨氧化 | 0.006 | ||
缺氧好氧工艺法(AO) | TN=50~70;NH4-N=40~60 | 0.0137 | [ |
序批式活性污泥法(SBR) | 0.0269 | ||
氧化沟(OD) | 0.0025 | ||
传统SBR | NH4-N=31 | 0.069±0.002 | [ |
改良SBR | 0.040±0.003 | ||
两段推流式 | TKN=64±6.5;NH4-N=47.4±3.5 | 0.019±0.0025 | [ |
SBR | TN=69±4.5;NH4-N=38.7±2.1 | 0.068 | [ |
AS(日本) | NH4-N=26.5、29 | 0.0014(DO:2.5~3mg·L-1) | [ |
0.0003(DO:1.5~2mg·L-1) | |||
AS(巴西) | NH4-N=27.5±7.1 | 0.001 | [ |
主体工艺 | 进水氮含量/mg·L-1 | 排放因子(EF) | 参考文献 |
---|---|---|---|
活性污泥法(AS) | — | 0.001 | [ |
硝化反硝化 | TKN=1265±41(污泥上清液) | 0.017 | [ |
厌氧氨氧化 | 0.006 | ||
缺氧好氧工艺法(AO) | TN=50~70;NH4-N=40~60 | 0.0137 | [ |
序批式活性污泥法(SBR) | 0.0269 | ||
氧化沟(OD) | 0.0025 | ||
传统SBR | NH4-N=31 | 0.069±0.002 | [ |
改良SBR | 0.040±0.003 | ||
两段推流式 | TKN=64±6.5;NH4-N=47.4±3.5 | 0.019±0.0025 | [ |
SBR | TN=69±4.5;NH4-N=38.7±2.1 | 0.068 | [ |
AS(日本) | NH4-N=26.5、29 | 0.0014(DO:2.5~3mg·L-1) | [ |
0.0003(DO:1.5~2mg·L-1) | |||
AS(巴西) | NH4-N=27.5±7.1 | 0.001 | [ |
运行参数变化情况 | CO2 | CH4 | N2O | 变化范围 | 参考文献 |
---|---|---|---|---|---|
温度升高 | 无明显变化 | 增加 | 降低 | 温度变化通过季节来体现 | [ |
— | — | 增加 | 10~30℃ | [ | |
增加 | 增加 | 增加 | — | [ | |
pH升高 | — | 无明显变化 | 增加 | 7.5~8.5 | [ |
— | — | 增加 | 6~9 | [ | |
进水C/N增加 | — | 增加 | 降低 | Qcarb:0、5m3·d-1、10m3·d-1 | [ |
无明显变化 | 降低 | 降低 | 7.5~10 | [ | |
降低 | 增加 | 降低 | 1.5~7.5 | [ | |
污泥龄增加 | 略有增加 | 降低 | 略有降低 | 13~42d | [ |
— | — | 降低 | 6~18d | [ | |
— | 增加 | 降低 | 12d、18d | [ | |
亚硝酸盐浓度增加 | — | 降低 | 增加 | 20~140mg·L-1 | [ |
— | — | 增加 | 0~10mg·L-1 | [ | |
— | 降低 | 增加 | 40mg·L-1、80mg·L-1、120mg·L-1 | [ | |
溶解氧浓度增加 | — | 降低 | 降低 | 0~4.5mg·L-1 | [ |
— | 降低 | 降低 | — | [ | |
— | 降低 | 降低 | 1mg·L-1、2mg·L-1、3mg·L-1 | [ |
运行参数变化情况 | CO2 | CH4 | N2O | 变化范围 | 参考文献 |
---|---|---|---|---|---|
温度升高 | 无明显变化 | 增加 | 降低 | 温度变化通过季节来体现 | [ |
— | — | 增加 | 10~30℃ | [ | |
增加 | 增加 | 增加 | — | [ | |
pH升高 | — | 无明显变化 | 增加 | 7.5~8.5 | [ |
— | — | 增加 | 6~9 | [ | |
进水C/N增加 | — | 增加 | 降低 | Qcarb:0、5m3·d-1、10m3·d-1 | [ |
无明显变化 | 降低 | 降低 | 7.5~10 | [ | |
降低 | 增加 | 降低 | 1.5~7.5 | [ | |
污泥龄增加 | 略有增加 | 降低 | 略有降低 | 13~42d | [ |
— | — | 降低 | 6~18d | [ | |
— | 增加 | 降低 | 12d、18d | [ | |
亚硝酸盐浓度增加 | — | 降低 | 增加 | 20~140mg·L-1 | [ |
— | — | 增加 | 0~10mg·L-1 | [ | |
— | 降低 | 增加 | 40mg·L-1、80mg·L-1、120mg·L-1 | [ | |
溶解氧浓度增加 | — | 降低 | 降低 | 0~4.5mg·L-1 | [ |
— | 降低 | 降低 | — | [ | |
— | 降低 | 降低 | 1mg·L-1、2mg·L-1、3mg·L-1 | [ |
1 | ZICKFELD K, SOLOMON S, GILFORD D M. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases[J]. Proceedings of the National Academy of Sciences, 2017, 114(4): 657-662. |
2 | VASILAKI V, CONCA V, FRISON N, et al. A knowledge discovery framework to predict the N2O emissions in the wastewater sector[J]. Water Research, 2020, 178: 115799. |
3 | RODRIGUEZ-GARCIA G, HOSPIDO A, BAGLEY D M, et al. A methodology to estimate greenhouse gases emissions in life cycle inventories of wastewater treatment plants[J]. Environmental Impact Assessment Review, 2012, 37: 37-46. |
4 | LIU S Y, XIAO W D. New wet flue gas desulfurization process using granular limestone and organic acid additives[J]. International Journal of Chemical Reactor Engineering, 2006, 4(1): 1-14. |
5 | MAKTABIFARD M, ZABOROWSKA E, MAKINIA J. Evaluating the effect of different operational strategies on the carbon footprint of wastewater treatment plants case studies from northern Poland[J]. Water Science and Technology, 2019, 79(11): 2211-2220. |
6 | 周兴, 郑有飞, 吴荣军, 等. 2003—2009年中国污水处理部门温室气体排放研究[J]. 气候变化研究进展, 2012, 8(2): 131-136. |
ZHOU X, ZHENG Y F, WU R J, et al. Greenhouse gas emissions from wastewater treatment in China during 2003—2009[J]. Advances in Climate Change Research, 2012, 8(2): 131-136. | |
7 | HAN Z, SUN D, WANG H, et al. Effects of ambient temperature and aeration frequency on emissions of ammonia and greenhouse gases from a sewage sludge aerobic composting plant[J]. Bioresource Technology, 2018, 270: 457-466. |
8 | 王洪臣. 城镇污水处理领域的碳减排[J]. 给水排水, 2010, 36(12): 1-3, 52. |
WANG H C. Carbon abatement in municipal wastewater treatment area[J]. Water & Wastewater Engineering, 2010, 36(12): 1-3, 52. | |
9 | ZHANG X Y, ZHANG M, LIU H, et al. Environmental sustainability: a pressing challenge to biological sewage treatment processes[J]. Current Opinion in Environmental Science & Health, 2019, 12: 1-5. |
10 | KYUNG D, KIM M, CHANG J, et al. Estimation of greenhouse gas emissions from a hybrid wastewater treatment plant[J]. Journal of Cleaner Production, 2015, 95: 117-123. |
11 | CAKIR F Y, STENSTROM M K. Greenhouse gas production: a comparison between aerobic and anaerobic wastewater treatment technology[J]. Water Research, 2005, 39(17): 4197-4203. |
12 | BAO Z Y, SUN S C, SUN D Z. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China[J]. International Biodeterioration & Biodegradation, 2016, 108: 108-114. |
13 | MANNINA G, BUTLER D, BENEDETTI L, et al. Greenhouse gas emissions from integrated urban drainage systems: where do we stand?[J]. Journal of Hydrology, 2018, 559: 307-314. |
14 | FOLEY J, DE HAAS D, HARTLEY K, et al. Comprehensive life cycle inventories of alternative wastewater treatment systems[J]. Water Research, 2010, 44(5): 1654-1666. |
15 | RENOU S, THOMAS J S, AOUSTIN E, et al. Influence of impact assessment methods in wastewater treatment LCA[J]. Journal of Cleaner Production, 2008, 16(10): 1098-1105. |
16 | BAO Z Y, SUN S C, SUN D Z. Characteristics of direct CO2 emissions in four full-scale wastewater treatment plants[J]. Desalination and Water Treatment, 2015, 54(4/5): 1070-1079. |
17 | YAN X, LI L, LIU J X. Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes[J]. Journal of Environmental Sciences, 2014, 26(2): 256-263. |
18 | ELEFSINIOTIS P, LI D. The effect of temperature and carbon source on denitrification using volatile fatty acids[J]. Biochemical Engineering Journal, 2006, 28(2): 148-155. |
19 | LI P Z, WANG S Y, PENG Y Z, et al. The synergistic effects of dissolved oxygen and pH on N2O production in biological domestic wastewater treatment under nitrifying conditions[J]. Environmental Technology, 2015, 36(13): 1623-1631. |
20 | ADOUANI N, LIMOUSY L, LENDORMI T, et al. N2O and NO emissions during wastewater denitrification step: influence of temperature on the biological process[J]. Comptes Rendus Chimie, 2015, 18(1): 15-22. |
21 | SWEETAPPLE C, FU G T, BUTLER D. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions[J]. Water Research, 2014, 55: 52-62. |
22 | MANNINA G, EKAMA G, CANIANI D, et al. Greenhouse gases from wastewater treatment - a review of modelling tools[J]. Science of the Total Environment, 2016, 551/552: 254-270. |
23 | SPÉRANDIO M, POCQUET M, GUO L S, et al. Evaluation of different nitrous oxide production models with four continuous long-term wastewater treatment process data series[J]. Bioprocess and Biosystems Engineering, 2016, 39(3): 493-510. |
24 | NI B-J, YUAN Z. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes[J]. Water Research, 2015, 87: 336-346. |
25 | CHURCH J, CLARK P, CAZENAVE A, et al. Climate change 2013: the physical science basis. An overview of the working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC)[J]. Geophysical Research Abstracts, 2014, DOI: 10.10161S0925-7721(01)00003-7. |
26 | NGUYEN T K L, NGO H H, GUO W S, et al. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes[J]. Science of the Total Environment, 2019, 671: 1302-1313. |
27 | MASUDA S, SUZUKI S, SANO I, et al. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant[J]. Chemosphere, 2015, 140: 167-173. |
28 | REN Y G, WANG J H, XU L, et al. Direct emissions of N2O, CO2, and CH4 from A/A/O bioreactor systems: impact of influent C/N ratio[J]. Environmental Science and Pollution Research, 2015, 22(11): 8163-8173. |
29 | LAW Y, JACOBSEN G E, SMITH A M, et al. Fossil organic carbon in wastewater and its fate in treatment plants[J]. Water Research, 2013, 47(14): 5270-5281. |
30 | TSENG L Y, ROBINSON A K, ZHANG X Y, et al. Identification of preferential paths of fossil carbon within water resource recovery facilities via radiocarbon analysis[J]. Environmental Science & Technology, 2016, 50(22): 12166-12178. |
31 | 蔡博峰, 朱松丽, 于胜民, 等. 《IPCC 2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8): 1-11. |
CAI B F,ZHU S L,YU S M, et al. Interpretation of “IPCC 2006 national greenhouse gas inventory guidelines 2019 revised edition”[J]. Environmental Engineering, 2019, 37(8): 1-11. | |
32 | SCHNEIDER A G, TOWNSEND-SMALL A, ROSSO D. Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification-denitrification[J]. Science of the Total Environment, 2015, 505: 1166-1173. |
33 | 闫旭, 邱德志, 郭东丽, 等. 中国城镇污水处理厂温室气体排放时空分布特征[J]. 环境科学, 2018, 39(3): 1256-1263. |
YAN X, QIU D Z, GUO D L, et al. Emission inventory of greenhouse gas from urban wastewater treatment plants and its temporal and spatial distribution in China[J]. Environmental Science, 2018, 39(3): 1256-1263. | |
34 | 鲍志远. 典型城市污水处理工艺温室气体排放特征及减排策略研究[D]. 北京: 北京林业大学, 2019. |
BAO Z Y. Research on greenhouse gas emission characteristics and emission reduction strategies of typical urban wastewater treatment process[D]. Beijing: Beijing Forestry University, 2019. | |
35 | 张星, 陈敏东, 高庆先, 等. 生活污水处理厂甲烷的释放通量及其影响因素[J]. 江西农业大学学报, 2018, 40(3): 657-662. |
ZHANG X, CHEN M D, GAO Q X, et al. Methane release flux from domestic sewage treatment plants and its influencing factors[J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2018, 40(3): 657-662. | |
36 | GUISASOLA A, DE HAAS D, KELLER J, et al. Methane formation in sewer systems[J]. Water Research, 2008, 42(6/7): 1421-1430. |
37 | CHAOSAKUL T, KOOTTATEP T, POLPRASERT C. A model for methane production in sewers[J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(11): 1316-1321. |
38 | LIU Y W, SHARMA K R, FLUGGEN M, et al. Online dissolved methane and total dissolved sulfide measurement in sewers[J]. Water Research, 2015, 68: 109-118. |
39 | 郝晓地, 程慧芹, 胡沅胜. 碳中和运行的国际先驱奥地利Strass污水厂案例剖析[J]. 中国给水排水, 2014, 30(22): 1-5. |
HAO X D, CHENG H Q, HU Y S. International pioneer of carbon-neutral operation of wastewater treatment: a case study at strass in Austria[J]. China Water & Wastewater, 2014, 30(22): 1-5. | |
40 | 陆家缘. 中国污水处理行业碳足迹与减排潜力分析[D]. 合肥: 中国科学技术大学, 2019. |
LU J Y. Analysis of carbon footprint and emission reduction potential of china’s wastewater treatment industry[D]. Hefei: University of Science and Technology of China, 2019. | |
41 | 蔡博峰, 高庆先, 李中华, 等. 中国城市污水处理厂甲烷排放因子研究[J]. 中国人口·资源与环境, 2015, 25(4): 118-124. |
CAI B F, GAO Q X, LI Z H, et al. Study on the methane emission factors of wastewater treatment plants in China[J]. China Population Resources and Environment, 2015, 25(4): 118-124. | |
42 | KAMPSCHREUR M J, TEMMINK H, KLEEREBEZEM R, et al. Nitrous oxide emission during wastewater treatment[J]. Water Research, 2009, 43(17): 4093-4103. |
43 | SUN S C, CHENG X, SUN D Z. Emission of N2O from a full-scale sequencing batch reactor wastewater treatment plant: characteristics and influencing factors[J]. International Biodeterioration and Biodegradation, 2013, 85: 545-549. |
44 | ZHANG F Z, PENG Y Z, MIAO L, et al. A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate[J]. Chemical Engineering Journal, 2017, 313: 619-628. |
45 | MOHANAKRISHNAN J, GUTIERREZ O, MEYER R L, et al. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor[J]. Water Research, 2008, 42(14): 3961-3971. |
46 | JIANG G M, GUTIERREZ O, SHARMA K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241-4251. |
47 | LAW Y Y, YE L, PAN Y P, et al. Nitrous oxide emissions from wastewater treatment processes[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2012, 367(1593): 1265-1277. |
48 | FOLEY J, DE HAAS D, YUAN Z G, et al. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants[J]. Water Research, 2010, 44(3): 831-844. |
49 | 王亚宜, 周东, 赵伟, 等. 污水生物处理实际工艺中氧化亚氮的释放:现状与挑战[J]. 环境科学学报, 2014, 34(5): 1079-1088. |
WANG Y Y, ZHOU D, ZHAO W, et al. The release of nitrous oxide in the actual process of biological wastewater treatment: current situation and challenges[J]. Journal of Environmental Science, 2014, 34(5): 1079-1088. | |
50 | MANNINA G, REBOUCAS T F, COSENZA A, et al. A plant-wide wastewater treatment plant model for carbon and energy footprint: model application and scenario analysis[J]. Journal of Cleaner Production, 2019, 217: 244-256. |
51 | TUMENDELGER A, TOYODA S, YOSHIDA N. Isotopic analysis of N2O produced in a conventional wastewater treatment system operated under different aeration conditions[J]. Rapid Communications in Mass Spectrometry, 2014, 28(17): 1883-1892. |
52 | PAN Y T, AKKER B VAN DEN, YE L, et al. Unravelling the spatial variation of nitrous oxide emissions from a step-feed plug-flow full scale wastewater treatment plant[J]. Scientific Reports, 2016, 6: 20792. |
53 | MELLO W Z D, RIBEIRO R P, BROTTO A C, et al. Nitrous oxide emissions from an intermittent aeration activated sludge system of an urban wastewater treatment plant[J]. Química Nova, 2013, 36(1): 16-20. |
54 | MASSARA T M, MALAMIS S, GUISASOLA A, et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water[J]. Science of the Total Environment, 2017, 596/597: 106-123. |
55 | CHEN Y Y, WANG D B, ZHENG X, et al. Biological nutrient removal with low nitrous oxide generation by cancelling the anaerobic phase and extending the idle phase in a sequencing batch reactor[J]. Chemosphere, 2014, 109: 56-63. |
56 | SUN S C, BAO Z Y, SUN D Z. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes[J]. Environmental Science and Pollution Research, 2015, 22(6): 4222-4229. |
57 | RODRIGUEZ-CABALLERO A, AYMERICH I, MARQUES R, et al. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor[J]. Water Research, 2015, 71: 1-10. |
58 | 王丝可, 于恒, 左剑恶. 温度和基质浓度对厌氧氨氧化工艺中N2O释放的影响[J]. 环境科学, 2020, 41(11): 5082-5088. |
WANG S K, YU H, ZUO J E. Influence of temperature and substrate concentration on N2O release in anaerobic ammonia oxidation process[J]. Environmental Science, 2020, 41(11): 5082-5088. | |
59 | 马娟, 彭永臻, 王丽, 等. 温度对反硝化过程的影响以及pH值变化规律[J]. 中国环境科学, 2008, 28(11): 1004-1008. |
MA J, PENG Y Z, WANG L, et al. Effect of temperature on denitrification and profiles of pH during the process[J]. China Environmental Science, 2008, 28(11): 1004-1008. | |
60 | MAUCIERI C, BARBERA A C, VYMAZAL J, et al. A review on the main affecting factors of greenhouse gases emission in constructed wetlands[J]. Agricultural and Forest Meteorology, 2017, 236: 175-193. |
61 | PIJUAN M, TORA J, RODRIGUEZ-CABALLERO A, et al. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater[J]. Water Research, 2014, 49:23-33. |
62 | PAN Y T, YE L, NI B J, et al. Effect of pH on N₂O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15): 4832-4840. |
63 | FLORES-ALSINA X, COROMINAS L, SNIP L, et al. Including greenhouse gas emissions during benchmarking of wastewater treatment plant control strategies[J]. Water Research, 2011, 45(16): 4700-4710. |
64 | MIKOSZ J. Analysis of greenhouse gas emissions and the energy balance in a model municipal wastewater treatment plant[J]. Desalination and Water Treatment, 2016, 57(59): 28551-28559. |
65 | KAMPSCHREUR M J, TAN N C G, KLEEREBEZEM R, et al. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture[J]. Environmental Science & Technology, 2008, 42(2): 429-435. |
66 | JIANG G M, GUTIERREZ O, SHARMA K R, et al. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems[J]. Water Research, 2010, 44(14): 4241-4251. |
67 | 柳岩, 孙德智, 伦小秀. 污水输送和污水处理过程中CH4产生与排放特征及影响因素研究进展[J]. 环境污染与防治, 2012, 34(5): 91-95. |
LIU Y, SUN D Z, LUN X X. Research progress on methane emission character and influencing factors in wastewater feeding and treatment process[J]. Environmental Pollution and Control, 2012, 34(5): 91-95. | |
68 | WATANABE A, YAMADA H, KIMURA M. Analysis of temperature effects on seasonal and interannual variation in CH4 emission from rice-planted pots[J]. Agriculture, Ecosystems & Environment, 2005, 105(1): 439-443. |
69 | 翟光红, 左孝凡. 污水处理的碳排放空间差异及影响因素分析[J]. 石家庄铁道大学学报(社会科学版), 2020, 14(1): 1-10. |
QU G H, ZUO X F. Spatial differences and influencing factors of carbon emissions from urban wastwater treatment in China[J]. Journal of Shijiazhuang Tiedao University (Social Science Edition), 2020, 14(1): 1-10. | |
70 | GUTIERREZ O, SUDARJANTO G, REN G, et al. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems[J]. Water Research, 2014, 48:569-578. |
71 | MANNINA G, CAPODICI M, COSENZA A, et al. Nitrous oxide from integrated fixed-film activated sludge membrane bioreactor: assessing the influence of operational variables[J]. Bioresource Technology, 2018, 247: 1221-1227. |
72 | 李惠娟, 彭党聪, 刘文博, 等. 不同污水处理工艺非二氧化碳温室气体的释放[J]. 环境科学, 2017, 38(4): 1640-1646. |
LI H J, PENG D C, LIU W B, et al. Non-CO2 greenhouse gas release from different biological wastewater treatment processes[J]. Environmental Science, 2017, 38(4): 1640-1646. | |
73 | BURGESS J E, COLLIVER B B, STUETZ R M, et al. Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 29(6): 309-313. |
74 | LIN H J, CHEN J R, WANG F Y, et al. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment[J]. Desalination, 2011, 280(1/2/3): 120-126. |
75 | ITOKAWA H, HANAKI K, MATSUO T. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J]. Water Research, 2001, 35(3): 657-664. |
76 | HU Z, ZHANG J, LI S P, et al. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs)[J]. Journal of Bioscience and Bioengineering, 2010, 109(5): 487-491. |
77 | BOURNAZOU M N, HOOSHIAR K, ARELLANO-GARCIA H, et al. Model based optimization of the intermittent aeration profile for SBRs under partial nitrification[J]. Water Research, 2013, 47(10): 3399-3410. |
78 | 罗涛, 王洪臣, 徐相龙, 等. 微孔曝气气泡生成阶段的并聚规律研究[J].环境工程, 2019, 37(9): 29-33. |
LUO T, WANG H C, XU X L, et al. Study on the law of bubble coalescence during formation phase in bubble aeration[J]. Environmental Engineering, 2019, 37(9): 29-33. | |
79 | FENU A, SMOLDERS S, DE GUSSEM K, et al. Conflicting carbon footprint and energy saving in a side-stream Anammox process[J]. Biochemical Engineering Journal, 2019, 151: 107336. |
80 | RAHMAN A, DE CLIPPELEIR H, THOMAS W, et al. A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater[J]. Chemical Engineering Journal, 2019, 357: 737-749. |
81 | DI BIASE A, KOWALASKI M S, DEVLIN T R, et al. Controlling biofilm retention time in an a-stage high-rate moving bed biofilm reactor for organic carbon redirection[J]. Science of the Total Environment, 2020, 745:141051. |
82 | RAHMAN A, MEERBURG F A, RAVADAGUNDHI S, et al. Bioflocculation management through high-rate contact-stabilization: a promising technology to recover organic carbon from low-strength wastewater[J]. Water Research, 2016, 104: 485-496. |
83 | 张远洋, 郭亚琼, 李娜, 等. N2O回收利用及减排技术研究进展[J].化工环保, 2018, 38(5): 499-504. |
ZHANG Y Y, GUO Y Q, LI N, et al. Research status and progress on N2O abatement and recycling technique[J]. Environmental Protection of Chemical industry, 2018, 38(5): 499-504. |
[1] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[2] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[3] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[4] | LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876. |
[5] | YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. |
[6] | TANG Jiaojiao, XIE Junxiang, CHEN Chongjun, YU Cheng, CHEN Dechao. Carbon neutral technologies and case studies in urban sewage treatment plants [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2662-2671. |
[7] | ZHANG Huining, SHI Zhongyu, XIAO Yankui, ZHANG Xiaoqin, YIN Xin, TIAN Lihong. Preparation of 3D graphene by 3D printing and its application in water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2231-2242. |
[8] | HE Shengbao, HUANG Gesheng. The new chemical materials industry and its role in low carbon development [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1634-1644. |
[9] | XU Ming, SHAO Mingfei, LIU Qingya, DUAN Xue. Hydrogen generation from electrochemical water splitting coupling carbonate reduction [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1121-1124. |
[10] | TIAN Yuanyu, QIAO Yingyun, ZHANG Yongning. Construction of green emission reduction system under the constraint of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1078-1084. |
[11] | YAN Guochun, WEN Liang, ZHANG Hua. Analysis of development path of modern coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6201-6212. |
[12] | SUN Zhiwei, WU Lianying, HU Yangdong, ZHANG Weitao. Application status of renewable energy in chemical production and its utilities system [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5297-5305. |
[13] | SONG Zhengyuan, SUN Guogang, ZU Zehui, WANG Zhongyuan. Design and analysis of FCC desulfurized wet flue gas plume elimination, purification and heat recovery system coupling with heat pump [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6934-6940. |
[14] | Wenjun XIE,Xiaosen LI,Yingnan ZOU,Chungang XU. Characteristics of carbon dioxide hydrate formation and decomposition with the system of cyclopentane [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 129-136. |
[15] | Kai WANG, Mingli HE, Meng WANG, Tianwei TAN. Green biological manufacture with CO2 as raw material [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 538-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |