Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (11): 6181-6194.DOI: 10.16085/j.issn.1000-6613.2020-2274
• Materials science and technology • Previous Articles Next Articles
JIN Yehao1,2(), FENG Xiaoquan1,2, ZHU Junyong1,2(), ZHANG Yatao1,2()
Received:
2020-11-16
Revised:
2021-02-01
Online:
2021-11-19
Published:
2021-11-05
Contact:
ZHU Junyong,ZHANG Yatao
金业豪1,2(), 冯孝权1,2, 朱军勇1,2(), 张亚涛1,2()
通讯作者:
朱军勇,张亚涛
作者简介:
金业豪(1997—),男,硕士研究生,研究方向为有机溶剂纳滤膜分离。E-mail:基金资助:
CLC Number:
JIN Yehao, FENG Xiaoquan, ZHU Junyong, ZHANG Yatao. Research progress in transfer models and membrane materials for organic solvent nanofiltration[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6181-6194.
金业豪, 冯孝权, 朱军勇, 张亚涛. 有机溶剂纳滤传递模型及最新膜材料研究进展[J]. 化工进展, 2021, 40(11): 6181-6194.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2274
传输模型 | 传输机制 | 控制参数 |
---|---|---|
不可逆热力学模型 | ||
Kedem-Katchalsky模型 | 扩散+对流 | Pi,LV,σi |
Spiegler-Kedemd模型 | 扩散+对流 | Pi,LV,σi |
溶解扩散模型 | ||
经典溶解扩散模型 | 扩散 | Pi,Pj |
“简单”溶解扩散模型 | 扩散 | Pi,Pj |
Maxwell-Stefan模型 | 多组分扩散 | Di,Ki |
孔流模型 | ||
哈根泊稷叶模型 | 对流 | rp,l,ε,τ |
道南空间孔流模型 | 扩散+对流+静电相互作用 | rp,l,ε,τ,Ψ |
修正的表面力孔流模型 | 扩散+对流+静电/亲和作用 | rp,l,ε,τ,φ |
传输模型 | 传输机制 | 控制参数 |
---|---|---|
不可逆热力学模型 | ||
Kedem-Katchalsky模型 | 扩散+对流 | Pi,LV,σi |
Spiegler-Kedemd模型 | 扩散+对流 | Pi,LV,σi |
溶解扩散模型 | ||
经典溶解扩散模型 | 扩散 | Pi,Pj |
“简单”溶解扩散模型 | 扩散 | Pi,Pj |
Maxwell-Stefan模型 | 多组分扩散 | Di,Ki |
孔流模型 | ||
哈根泊稷叶模型 | 对流 | rp,l,ε,τ |
道南空间孔流模型 | 扩散+对流+静电相互作用 | rp,l,ε,τ,Ψ |
修正的表面力孔流模型 | 扩散+对流+静电/亲和作用 | rp,l,ε,τ,φ |
溶剂 | 摩尔质量/g·mol-1 | 密度/g·mL-1 | 动力学半径/nm | 黏度/mPa·s | 相对极性 | Hansen溶解度参数 |
---|---|---|---|---|---|---|
甲醇 | 32 | 0.791 | 0.38 | 0.544 | 0.762 | 29.7 |
乙醇 | 46 | 0.789 | 0.49 | 1.074 | 0.309 | 20.3 |
异丙醇 | 60 | 0.785 | 0.47 | 2.038 | 0.546 | 24.6 |
正丁醇 | 74 | 0.810 | 0.50 | 2.544 | 0.586 | 23.1 |
乙腈 | 41 | 0.786 | 0.34 | 0.369 | 0.46 | 24.4 |
四氢呋喃 | 72 | 0.866 | 0.48 | 0.456 | 0.207 | 19.4 |
丙酮 | 58 | 0.786 | 0.47 | 0.306 | 0.355 | 20.1 |
二甲基甲酰胺 | 73 | 0.944 | 0.50 | 0.816 | 0.386 | 24.8 |
水 | 18 | 1 | 0.27 | 0.89 | 1 | 47.8 |
正庚烷 | 100 | 0.684 | 0.75 | 0.4 | 0.012 | 15.3 |
正己烷 | 86 | 0.655 | 0.75 | 0.300 | 0.009 | 14.9 |
甲苯 | 92 | 0.867 | 0.55 | 0.555 | 0.099 | 18.2 |
二氯甲烷 | 85 | 1.326 | 0.49 | 0.414 | 0.309 | 20.3 |
环己烷 | 84 | 0.799 | 1.020 | — | — | 16.8 |
溶剂 | 摩尔质量/g·mol-1 | 密度/g·mL-1 | 动力学半径/nm | 黏度/mPa·s | 相对极性 | Hansen溶解度参数 |
---|---|---|---|---|---|---|
甲醇 | 32 | 0.791 | 0.38 | 0.544 | 0.762 | 29.7 |
乙醇 | 46 | 0.789 | 0.49 | 1.074 | 0.309 | 20.3 |
异丙醇 | 60 | 0.785 | 0.47 | 2.038 | 0.546 | 24.6 |
正丁醇 | 74 | 0.810 | 0.50 | 2.544 | 0.586 | 23.1 |
乙腈 | 41 | 0.786 | 0.34 | 0.369 | 0.46 | 24.4 |
四氢呋喃 | 72 | 0.866 | 0.48 | 0.456 | 0.207 | 19.4 |
丙酮 | 58 | 0.786 | 0.47 | 0.306 | 0.355 | 20.1 |
二甲基甲酰胺 | 73 | 0.944 | 0.50 | 0.816 | 0.386 | 24.8 |
水 | 18 | 1 | 0.27 | 0.89 | 1 | 47.8 |
正庚烷 | 100 | 0.684 | 0.75 | 0.4 | 0.012 | 15.3 |
正己烷 | 86 | 0.655 | 0.75 | 0.300 | 0.009 | 14.9 |
甲苯 | 92 | 0.867 | 0.55 | 0.555 | 0.099 | 18.2 |
二氯甲烷 | 85 | 1.326 | 0.49 | 0.414 | 0.309 | 20.3 |
环己烷 | 84 | 0.799 | 1.020 | — | — | 16.8 |
膜材料 | 膜 | 溶剂渗透 | 溶质截留 | 使用或推荐使用 模型 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
分离层 | 支撑层 | 溶剂 | 渗透性 /L·m-2·h-1·bar-1 | 溶质 | 截留率 /% | |||
无机材料 | APTES接枝的γ-Al2O3 | α-Al2O3 | 甲苯 | 3.1 | 苏丹黑B | 72 | 不可逆热力学模型 | [ |
MPTES接枝的γ-Al2O3 | α-Al2O3 | 异丙醇 | 0.78 | 苏丹黑B | 66 | 不可逆热力学模型 | [ | |
高分子聚合物材料 | 聚酰亚胺 | 异丙醇 | 2.7 | 玫瑰红 | 95 | 溶解扩散模型 | [ | |
类金刚石碳膜 | 聚丙烯腈 | 乙醇 | 84.1 | 偶氮苯 | 94.4 | 孔流模型 | [ | |
聚酰胺 | 聚丙烯腈 | 甲醇 | 13.3 | 甲基橙 | 97.7 | 溶解扩散模型 | [ | |
多孔有机材料 | 共轭微孔聚合物 | 聚丙烯腈 | 乙醇 | 13.8 | 玫瑰红 | 99 | 孔流模型 | [ |
自具微孔聚合物 | 聚丙烯腈 | 乙醇 | 4.3 | 甲基橙 | 93 | 溶解扩散模型 | [ | |
Tp-BPY | 无纺布 | 甲醇 | 108 | 酸性品红 | 97 | 孔流模型 | [ | |
M-TpBD | 乙醇 | 86.5 | 刚果红 | 96 | 孔流模型 | [ | ||
有机-无机杂化材料 | ZIF-8/PA | 聚酰亚胺 | 甲醇 | 2.5 | 聚苯乙烯 | 90 | 溶解扩散模型 | [ |
UIO-66-NH2 | 聚酰亚胺 | 乙醇 | 0.88 | 玫瑰红 | 96.3 | 孔流模型 | [ | |
石墨烯类二维材料 | 还原氧化石墨烯 | 尼龙 | 甲醇 | 75.3 | 伊文思蓝/960 | 100 | 孔流模型 | [ |
MXenes | 尼龙 | 异丙醇 | 983 | 酸性黄79 | 100 | 孔流模型 | [ |
膜材料 | 膜 | 溶剂渗透 | 溶质截留 | 使用或推荐使用 模型 | 参考 文献 | |||
---|---|---|---|---|---|---|---|---|
分离层 | 支撑层 | 溶剂 | 渗透性 /L·m-2·h-1·bar-1 | 溶质 | 截留率 /% | |||
无机材料 | APTES接枝的γ-Al2O3 | α-Al2O3 | 甲苯 | 3.1 | 苏丹黑B | 72 | 不可逆热力学模型 | [ |
MPTES接枝的γ-Al2O3 | α-Al2O3 | 异丙醇 | 0.78 | 苏丹黑B | 66 | 不可逆热力学模型 | [ | |
高分子聚合物材料 | 聚酰亚胺 | 异丙醇 | 2.7 | 玫瑰红 | 95 | 溶解扩散模型 | [ | |
类金刚石碳膜 | 聚丙烯腈 | 乙醇 | 84.1 | 偶氮苯 | 94.4 | 孔流模型 | [ | |
聚酰胺 | 聚丙烯腈 | 甲醇 | 13.3 | 甲基橙 | 97.7 | 溶解扩散模型 | [ | |
多孔有机材料 | 共轭微孔聚合物 | 聚丙烯腈 | 乙醇 | 13.8 | 玫瑰红 | 99 | 孔流模型 | [ |
自具微孔聚合物 | 聚丙烯腈 | 乙醇 | 4.3 | 甲基橙 | 93 | 溶解扩散模型 | [ | |
Tp-BPY | 无纺布 | 甲醇 | 108 | 酸性品红 | 97 | 孔流模型 | [ | |
M-TpBD | 乙醇 | 86.5 | 刚果红 | 96 | 孔流模型 | [ | ||
有机-无机杂化材料 | ZIF-8/PA | 聚酰亚胺 | 甲醇 | 2.5 | 聚苯乙烯 | 90 | 溶解扩散模型 | [ |
UIO-66-NH2 | 聚酰亚胺 | 乙醇 | 0.88 | 玫瑰红 | 96.3 | 孔流模型 | [ | |
石墨烯类二维材料 | 还原氧化石墨烯 | 尼龙 | 甲醇 | 75.3 | 伊文思蓝/960 | 100 | 孔流模型 | [ |
MXenes | 尼龙 | 异丙醇 | 983 | 酸性黄79 | 100 | 孔流模型 | [ |
36 | HUANG L, CHEN J, GAO T, et al. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration[J]. Advanced Materials, 2016, 28(39): 8669-8674. |
37 | WANG J T, CHEN P P, SHI B B, et al. A regularly channeled lamellar membrane for unparalleled water and organics permeation[J]. Angewandte Chemie International Edition, 2018, 57(23): 6814-6818. |
38 | GESTEL T VAN, BRUGGEN B VAN DER, BUEKENHOUDT A, et al. Surface modification of γ-Al2O3/TiO2 multilayer membranes for applications in non-polar organic solvents[J]. Journal of Membrane Science, 2003, 224(1/2): 3-10. |
39 | MERLET R B, PIZZOCCARO-ZILAMY M A, NIJMEIJER A, et al. Hybrid ceramic membranes for organic solvent nanofiltration: state-of-the-art and challenges[J]. Journal of Membrane Science, 2020, 599: 117839. |
40 | XIA L L, REN J, WEYD M, et al. Ceramic-supported thin film composite membrane for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 563: 857-863. |
41 | TANARDI C R, CATANA R, BARBOIU M, et al. Polyethyleneglycol grafting of γ-alumina membranes for solvent resistant nanofiltration[J]. Microporous and Mesoporous Materials, 2016, 229: 106-116. |
42 | HOSSEINABADI S R, WYNS K, MEYNEN V, et al. Solvent-membrane-solute interactions in organic solvent nanofiltration (OSN) for Grignard functionalised ceramic membranes: explanation via Spiegler-Kedem theory[J]. Journal of Membrane Science, 2016, 513: 177-185. |
43 | AMIRILARGANI M, MERLET R B, CHU L Y, et al. Molecular separation using poly (styrene-co-maleic anhydride) grafted to γ-alumina: surface versus pore modification[J]. Journal of Membrane Science, 2019, 582: 298-306. |
44 | 卫旺, 相里粉娟, 金万勤, 等. 耐溶剂纳滤膜[J]. 化学进展, 2007, 19(10): 1592-1597. |
WEI Wang, XIANGLI Fenjuan, JIN Wanqin, et al. Solvent resistant nanofiltration membranes[J]. Progress in Chemistry, 2007, 19(10): 1592-1597. | |
45 | VANDEZANDE P, LI X F, GEVERS L E M, et al. High throughput study of phase inversion parameters for polyimide-based SRNF membranes[J]. Journal of Membrane Science, 2009, 330(1/2): 307-318. |
46 | DAS S, HEASMAN P, BEN T, et al. Porous organic materials: strategic design and structure-function correlation[J]. Chemical Reviews, 2017, 117(3): 1515-1563. |
47 | HOU J, ZHANG H C, SIMON G P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions[J]. Advanced Materials, 2020, 32(18): 1902009. |
48 | YUAN S S, SWARTENBROEKX J, LI Y, et al. Facile synthesis of Kevlar nanofibrous membranes via regeneration of hydrogen bonds for organic solvent nanofiltration[J]. Journal of Membrane Science, 2019, 573: 612-620. |
1 | LIVELY R P, SHOLL D S. From water to organics in membrane separations[J]. Nature Materials, 2017, 16(3): 276-279. |
2 | MARCHETTI P, JIMENEZ SOLOMON M F, SZEKELY G, et al. Molecular separation with organic solvent nanofiltration: a critical review[J]. Chemical Reviews, 2014, 114(21): 10735-10806. |
49 | JIMENEZ-SOLOMON M F, SONG Q, JELFS K E, et al. Polymer nanofilms with enhanced microporosity by interfacial polymerization[J]. Nature Materials, 2016, 15(7): 760-767. |
50 | ZHU J Y, YUAN S S, WANG J, et al. Microporous organic polymer-based membranes for ultrafast molecular separations[J]. Progress in Polymer Science, 2020, 110: 101308. |
51 | WANG L H, SAHABUDEEN H, ZHANG T, et al. Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline polymers[J]. npj 2D Materials and Applications, 2018, 2(1): 26. |
52 | BUDD P, ELABAS E, GHANEM B, et al. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity[J]. Advanced Materials, 2004, 16(5): 456-459. |
53 | JIANG J X, SU F, TREWIN A, et al. Conjugated microporous poly(aryleneethynylene) networks[J]. Angewandte Chemie International Edition, 2007, 46(45): 8574-8578. |
54 | XU Y H, JIN S B, XU H, et al. Conjugated microporous polymers: design, synthesis and application[J]. Chemical Society Reviews, 2013, 42(20): 8012-8031. |
55 | AMIRILARGANI M, YOKOTA G N, VERMEIJ G H, et al. Melamine-based microporous organic framework thin films on an alumina membrane for high-flux organic solvent nanofiltration[J]. ChemSusChem, 2020, 13(1): 136-140. |
56 | CORCOS A, LEVATO G A, JIANG Z W, et al. Reducing the pore size of covalent organic frameworks in thin-film composite membranes enhances solute rejection[J]. ACS Materials Letters, 2019, 1(4): 440-446. |
57 | YUAN S S, LI X, ZHU J Y, et al. Covalent organic frameworks for membrane separation[J]. Chemical Society Reviews, 2019, 48(10): 2665-2681. |
58 | HALDER A, KARAK S, ADDICOAT M, et al. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding[J]. Angewandte Chemie International Edition, 2018, 57(20): 5797-5802. |
59 | LI Y, WU Q, GUO X, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[J]. Nature Communications, 2020, 11(1): 599. |
60 | WU X W, HAN X, LIU Y H, et al. Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning[J]. Journal of the American Chemical Society, 2018, 140(47): 16124-16133. |
61 | DEY K, KUNJATTU H S, CHAHANDE A M, et al. Nanoparticle size-fractionation through self-standing porous covalent organic framework films[J]. Angewandte Chemie International Edition, 2020, 59(3): 1161-1165. |
62 | ZHANG K, HE Z J, GUPTA K M., et al. Computational design of 2D functional covalent-organic framework membranes for water desalination[J]. Environmental Science: Water Research & Technology, 2017, 3(4): 735-743. |
63 | TSARKOV S, KHOTIMSKIY V, BUDD P M, et al. Solvent nanofiltration through high permeability glassy polymers: effect of polymer and solute nature[J]. Journal of Membrane Science, 2012, 423/424: 65-72. |
64 | IGNACZ G, FEI F, SZEKELY G. Ion-stabilized membranes for demanding environments fabricated from polybenzimidazole and its blends with polymers of intrinsic microporosity[J]. ACS Applied Nano Materials, 2018, 1(11): 6349-6356. |
65 | GORGOJO Patricia, KARAN Santanu, WONG Himcheng, et al. Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes[J]. Advanced Functional Materials, 2014, 24(30): 4729-4737. |
66 | GAO J, JAPIP S, CHUNG T S. Organic solvent resistant membranes made from a cross-linked functionalized polymer with intrinsic microporosity (PIM) containing thioamide groups[J]. Chemical Engineering Journal, 2018, 353: 689-698. |
67 | ZHOU S Y, ZHAO Y L, ZHENG J F, et al. High-performance functionalized polymer of intrinsic microporosity (PIM) composite membranes with thin and stable interconnected layer for organic solvent nanofiltration[J]. Journal of Membrane Science, 2019, 591: 117347. |
68 | XU Q S, JIANG J W. Effects of functionalization on the nanofiltration performance of PIM-1: molecular simulation investigation[J]. Journal of Membrane Science, 2019, 591: 117357. |
69 | HE X, SIN H, LIANG B, et al. Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration[J]. Advanced Functional Materials, 2019, 29(32): 1900134. |
70 | LI C, LI S X, TIAN L, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2019, 572: 520-531. |
71 | DUAN K, WANG J, ZHANG Y T, et al. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation[J]. Journal of Membrane Science, 2019, 572: 588-595. |
72 | BURKE D W, SUN C, CASTANO I, et al. Acid exfoliation of imine-linked covalent organic frameworks enables solution processing into crystalline thin films[J]. Angewandte Chemie International Edition, 2020, 59(13): 5165-5171. |
73 | WEI W, LIU J, JIANG J W. Computational design of 2D covalent-organic framework membranes for organic solvent nanofiltration[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1734-1744. |
74 | ZHAO Y Y, LIU Y L, WANG X M, et al. Impacts of metal-organic frameworks on structure and performance of polyamide thin-film nanocomposite membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13724-13734. |
75 | JUE M L, KOH D Y, MCCOOL B A, et al. Enabling widespread use of microporous materials for challenging organic solvent separations[J]. Chemistry of Materials, 2017, 29(23): 9863-9876. |
76 | DENNY M S, MORETON J C, BENZ L, et al. Metal-organic frameworks for membrane-based separations[J]. Nature Reviews Materials, 2016, 1: 16078. |
77 | SORRIBAS S, GORGOJO P, TÉLLEZ C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. Journal of the American Chemical Society, 2013, 135(40): 15201-15208. |
78 | XU S J, SHEN Q, CHEN G E, et al. Novel β-CD@ZIF-8 nanoparticles-doped poly(m-phenylene isophthalamide) (PMIA) thin-film nanocomposite (TFN) membrane for organic solvent nanofiltration (OSN)[J]. ACS Omega, 2018, 3(9): 11770-11787. |
79 | WANG Naixin, LIU Tianjiao, SHEN Hongpan, et al. Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration[J]. AIChE Journal, 2016, 62(2): 538-546. |
80 | ZHANG R, JI S, WANG N, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angewandte Chemie International Edition, 2014, 53(37): 9775-9779. |
81 | WEI W, GUPTA K M, LIU J, et al. Zeolitic imidazolate framework membranes for organic solvent nanofiltration: a molecular simulation exploration[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33135-33143. |
82 | RAN Jin, PAN Ting, WU Yuying, et al. Acid spacers endowing g-C3N4 membranes with superior permeability and stability[J]. Angewandte Chemie International Edition, 2019, 58(46): 16463-16468. |
83 | LI J, ZHOU X, WANG J, et al. Two-dimensional covalent organic frameworks (COFs) for membrane separation: a mini review[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15394-15406. |
84 | LI Y Y, LI C, LI S X, et al. Graphene oxide (GO)-interlayered thin-film nanocomposite (TFN) membranes with high solvent resistance for organic solvent nanofiltration (OSN)[J]. Journal of Materials Chemistry A, 2019, 7(21): 13315-13330. |
85 | HUANG T F, PUSPASARI T, NUNES S P, et al. Ultrathin 2D-layered cyclodextrin membranes for high-performance organic solvent nanofiltration[J]. Advanced Functional Materials, 2019, 30(4): 1906797. |
86 | YANG Q, SU Y, CHI C, et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation[J]. Nature Materials, 2017, 16(12): 1198-1202. |
87 | NIE L N, GOH K, WANG Y, et al. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration[J]. Science Advances, 2020, 6(17): eaaz9184. |
88 | GUO B Y, JIANG S D, TANG M J, et al. MoS2 membranes for organic solvent nanofiltration: stability and structural control[J]. The Journal of Physical Chemistry Letters, 2019, 10(16): 4609-4617. |
89 | LIN H, DANGWAL S, LIU R C, et al. Reduced wrinkling in GO membrane by grafting basal-plane groups for improved gas and liquid separations[J]. Journal of Membrane Science, 2018, 563: 336-344. |
90 | MAHALINGAM D K, WANG S F, NUNES S P. Stable graphene oxide cross-linked membranes for organic solvent nanofiltration[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23106-23113. |
91 | 汪林, 纪树兰, 王乃鑫, 等. 用于有机溶剂体系分离的氧化石墨烯基复合膜的构筑[J]. 膜科学与技术, 2020, 40(1): 352-359. |
WANG Lin, JI Shulan, WANG Naixin, et al. Construction of graphene oxide membrane for the separation in organic solvent system[J]. Membrane Science and Technology, 2020, 40(1): 352-359. | |
92 | GAO J, ZHANG M Y, WANG J T, et al. Bioinspired modification of layer-stacked molybdenum disulfide (MoS2) membranes for enhanced nanofiltration performance[J]. ACS Omega, 2019, 4(2): 4012-4022. |
93 | CHEN C, WANG J, LIU D, et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation[J]. Nature Communications, 2018, 9(1): 1902. |
94 | WU X, CUI X, WU W, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 58(51): 18524-18529. |
95 | KUMAR M, KHAN M A, ARAFAT H A. Recent developments in the rational fabrication of thin film nanocomposite membranes for water purification and desalination[J]. ACS Omega, 2020, 5(8): 3792-3800. |
96 | HOMAEIGOHAR S, ELBAHRI M. Graphene membranes for water desalination[J]. NPG Asia Materials, 2017, 9(8): e427. |
97 | DIDASKALOU C, KUPAI J, CSERI L, et al. Membrane-grafted asymmetric organocatalyst for an integrated synthesis-separation platform[J]. ACS Catalysis, 2018, 8(8): 7430-7438. |
98 | GROßEHEILMANN J, BÜTTNER H, KOHRT C, et al. Recycling of phosphorus-based organocatalysts by organic solvent nanofiltration[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2817-2822. |
99 | PESHEV D, LIVINGSTON A G. OSN Designer, a tool for predicting organic solvent nanofiltration technology performance using Aspen One, MATLAB and CAPE OPEN[J]. Chemical Engineering Science, 2013, 104: 975-987. |
100 | VANNESTE J, ORMEROD D, THEYS G, et al. Towards high resolution membrane-based pharmaceutical separations[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(1): 98-108. |
101 | FAHRENWALDT T, GROßEHEILMANN J, ERBEN F, et al. Organic solvent nanofiltration as a tool for separation of quinine-based organocatalysts[J]. Organic Process Research & Development, 2013, 17(9): 1131-1136. |
102 | KIM J F, GAFFNEY P R J, VALTCHEVA I B, et al. Organic solvent nanofiltration (OSN): a new technology platform for liquid-phase oligonucleotide synthesis (LPOS)[J]. Organic Process Research & Development, 2016, 20(8): 1439-1452. |
3 | ORMEROD D, NOTEN B, DORBEC M, et al. Cyclic peptide formation in reduced solvent volumes via in-line solvent recycling by organic solvent nanofiltration[J]. Organic Process Research & Development, 2015, 19(7): 841-848. |
4 | ANDRZEJ G, ANDRZEJ S. Intensification of biobased processes[M]. Croydon: CPI Group Ltd., 2018: 132-144. |
5 | WERTH K, KAUPENJOHANN P, SKIBOROWSKI M. The potential of organic solvent nanofiltration processes for oleochemical industry[J]. Separation and Purification Technology, 2017, 182: 185-196. |
6 | WANG J T, YUAN Z J, WU X L, et al. Beetle-inspired assembly of heterostructured lamellar membranes with polymer cluster-patterned surface for enhanced molecular permeation[J]. Advanced Functional Materials, 2019, 29(23): 1900819. |
7 | VANDEZANDE P, GEVERS L E, VANKELECOM I F. Solvent resistant nanofiltration: separating on a molecular level[J]. Chemical Society Reviews, 2008, 37(2): 365-405. |
8 | WANG L, BOUTILIER M S H, KIDAMBI P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522. |
9 | SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. |
10 | KOROS W J, ZHANG C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
11 | 邢雅南, 苏保卫, 甄宏艳. 耐溶剂纳滤膜的制备与应用研究进展[J]. 化工进展, 2015, 34(11): 3832-3840. |
XING Yanan, SU Baowei, ZHEN Hongyan. Research progress of solvent resistant nanofiltration membranes[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3832-3840. | |
12 | 周宗尧, 张朔, 王宁, 等. 有机溶剂分离膜技术研究进展[J]. 膜科学与技术, 2018, 38(1): 104-113. |
ZHOU Zongyao, ZHANG Shuo, WANG Ning, et al. Progress in the technology of organic solvent separation membrane[J]. Membrane Science and Technology, 2018, 38(1): 104-113. | |
13 | ASADI TASHVIGH A, FENG Y N, WEBER M, et al. Selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: a review[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10678-10691. |
14 | LIANG B, HE X, HOU J, et al. Membrane separation in organic liquid: technologies, achievements, and opportunities[J]. Advanced Materials, 2019, 31(45): e1806090. |
15 | KEDEM O, KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes[J]. Biochimica et Biophysica Acta, 1958, 27: 229-246. |
16 | LONSDALE H K, MERTEN U, RILEY R L. Transport properties of cellulose acetate osmotic membranes[J]. Journal of Applied Polymer Science, 1965, 9(4): 1341-1362. |
17 | MASON E A, LONSDALE H K. Statistical-mechanical theory of membrane transport[J]. Journal of Membrane Science, 1990, 51(1/2): 1-81. |
18 | NIEMI H, PALOSAARI S. Flowsheet simulation of ultrafiltration and reverse osmosis processes[J]. Journal of Membrane Science, 1994, 91(1/2): 111-124. |
19 | WHU J A, BALTZIS B C, SIRKAR K K. Nanofiltration studies of larger organic microsolutes in methanol solutions[J]. Journal of Membrane Science, 2000, 170(2): 159-172. |
20 | BOWEN W R, WELFOOT J S. Modelling of membrane nanofiltration—pore size distribution effects[J]. Chemical Engineering Science, 2002, 57(8): 1393-1407. |
21 | MARCHETTI P, LIVINGSTON A G. Predictive membrane transport models for organic solvent nanofiltration: how complex do we need to be?[J]. Journal of Membrane Science, 2015, 476: 530-553. |
22 | 孙志娟, 张心亚, 黄洪, 等. 溶解度参数的发展及应用[J]. 橡胶工业, 2007, 54(1): 54-58. |
SUN Zhijuan, ZHANG Xinya, HUANG Hong, et al. The development and application of solubility parameters[J]. China Rubber Industry, 2007, 54(1): 54-58. | |
23 | SUI X, YUAN Z, YU Y, et al. 2D material based advanced membranes for separations in organic solvents[J]. Small, 2020, 16(50): e2003400. |
24 | ZHENG S X, TU Q S, WANG M N, et al. Correlating interlayer spacing and separation capability of graphene oxide membranes in organic solvents[J]. ACS Nano, 2020, 14(5): 6013-6023. |
25 | CHUAH C Y, NIE L N, LEE J M, et al. Graphene-based advanced membrane applications in organic solvent nanofiltration[J]. Advanced Functional Materials, 2020, DOI: 10.1002/adfm.202006949. |
26 | MERLET R B, TANARDI C R, VANKELECOM I F J, et al. Interpreting rejection in SRNF across grafted ceramic membranes through the Spiegler-Kedem model[J]. Journal of Membrane Science, 2017, 525: 359-367. |
27 | XU Y C, CHENG X Q, LONG J, et al. A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations[J]. Journal of Membrane Science, 2016, 497: 77-89. |
28 | KARAN S, SAMITSU S, PENG X, et al. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets[J]. Science, 2012, 335(6067): 444-447. |
29 | KARAN Santanu, JIANG Zhiwei, LIVINGSTON Andrew G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348: 1347-1351. |
30 | LIANG B, WANG H, SHI X H, et al. Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration[J]. Nature Chemistry, 2018, 10(9): 961-967. |
31 | LI J Q, ZHANG M X, FENG W L, et al. PIM-1 pore-filled thin film composite membranes for tunable organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 601: 117951. |
32 | DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[J]. Journal of the American Chemical Society, 2017, 139(37): 13083-13091. |
33 | KANDAMBETH S, BISWAL B P, CHAUDHARI H D, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes[J]. Advanced Materials, 2017, DOI:10.1002/adma.201603945. |
34 | QIAN H D, ZHENG J F, ZHANG S B. Preparation of microporous polyamide networks for carbon dioxide capture and nanofiltration[J]. Polymer, 2013, 54(2): 557-564. |
35 | MA D C, HAN G, GAO Z F, et al. Continuous UiO-66-type metal-organic framework thin film on polymeric support for organic solvent nanofiltration[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45290-45300. |
[1] | GAO Yifei, YI Qun, QI Kai, GAO Lili, LI Xuelian. Research status and application in H2/CH4 separation of MOFs-based membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407. |
[2] | MENG Xiangwei, WU Xiaoli, GAO Zhanpeng, LI Wenpeng, WANG Jingtao. Preparation and organic solvent nanofiltration performance of vermiculite lamellar membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5986-5995. |
[3] | CHEN Jiansong, SUN Nannan, GAO Qiang, WEI Wei. Novel synthesis of olefin-linked covalent organic frameworks via aldol condensation [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6765-6776. |
[4] | ZHU Benwei, YAO Zhong, ZHONG Zhaoxiang, SUN Yun, ZHOU Mingzhu, JIANG Shuai. Research progress of pervaporation in separation of volatile aromatic compounds within essential oils [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5875-5882. |
[5] | Ziyang LIU, Zhenping QIN, Suping CUI, Mengmeng JIA, Quanfu AN, Naixin WANG, Yan LIU, Hongxia GUO. Effect of wettability of organic solvent nanofiltration membrane on its permeability and separation performance [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2715-2723. |
[6] | XING Yanan, SU Baowei, ZHEN Hongyan. Research progress of solvent resistant nanofiltration membranes [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3832-3840. |
[7] | MA Yanhong1,DING Yun1,YANG Qing1,2,3,LI Peng1. Research progress of forward osmosis membrane materials [J]. Chemical Industry and Engineering Progree, 2014, 33(12): 3299-3303. |
[8] | LI Jie,WANG Naixin,JI Shulan. Advances in organic/inorganic hybrid alcohol perm-selective pervaporation membrane [J]. Chemical Industry and Engineering Progree, 2014, 33(11): 2982-2990. |
[9] | ZHONG Wenfeng1,YANG Minlin2,ZUO Yuanzhi2,HUANG Simin2. Progress on membrane-based dehumidifier for liquid desiccant air dehumidification [J]. Chemical Industry and Engineering Progree, 2013, 32(05): 971-977. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |