Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5480-5490.DOI: 10.16085/j.issn.1000-6613.2020-2217
• Chemical processes and equipment • Previous Articles Next Articles
JING Peiyu1(), ZHENG Sijia2(
), ZHANG Shuai3, TANG Chao4, DUAN Linlin5, FU Bin1
Received:
2020-11-05
Revised:
2021-01-10
Online:
2021-10-25
Published:
2021-10-10
Contact:
ZHENG Sijia
敬佩瑜1(), 郑思佳2(
), 张帅3, 唐超4, 段林林5, 付斌1
通讯作者:
郑思佳
作者简介:
敬佩瑜(1991—),女,硕士,主要从事油气储运工程实验教学与科研工作。E-mail:基金资助:
CLC Number:
JING Peiyu, ZHENG Sijia, ZHANG Shuai, TANG Chao, DUAN Linlin, FU Bin. Change characteristics of pressure drop and collection efficiency of the filter separators in the gas transmission station[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5480-5490.
敬佩瑜, 郑思佳, 张帅, 唐超, 段林林, 付斌. 输气站场过滤分离器压降与除尘效率变化特性[J]. 化工进展, 2021, 40(10): 5480-5490.
滤芯/个 | 滤材 | 单根厚度/mm | 颜色 | 长度/mm | 初始压降/kPa | 操作温度/℃ | 过滤区域/m2 | 设计除尘效率/% |
---|---|---|---|---|---|---|---|---|
29 | 聚酯纤维 | 9 | 白色 | 1800 | 13 | -5~115 | 2.98 | >99 |
滤芯/个 | 滤材 | 单根厚度/mm | 颜色 | 长度/mm | 初始压降/kPa | 操作温度/℃ | 过滤区域/m2 | 设计除尘效率/% |
---|---|---|---|---|---|---|---|---|
29 | 聚酯纤维 | 9 | 白色 | 1800 | 13 | -5~115 | 2.98 | >99 |
编号 | 入口压力 /MPa | 标况输量 /104 m3?d-1 | 工况输量 /104 m3?d-1 | 入口颗粒粒径 /μm | 入口流速 /m?s-1 | 气体密度 /kg?m-3 | 运行时间 /a |
---|---|---|---|---|---|---|---|
F-1 | 2.5 | 150~400 | 14.7~39.4 | 0~50 | 8.2~23.4 | 20.54 | 0, 0.5, 1 |
F-2 | 3.5 | 150~400 | 14.7~39.4 | 0~50 | 5.7~16.3 | 28.76 | 0, 0.5, 1 |
F-3 | 4.5 | 150~400 | 14.7~39.4 | 0~50 | 4.4~12.4 | 36.98 | 0, 0.5, 1 |
编号 | 入口压力 /MPa | 标况输量 /104 m3?d-1 | 工况输量 /104 m3?d-1 | 入口颗粒粒径 /μm | 入口流速 /m?s-1 | 气体密度 /kg?m-3 | 运行时间 /a |
---|---|---|---|---|---|---|---|
F-1 | 2.5 | 150~400 | 14.7~39.4 | 0~50 | 8.2~23.4 | 20.54 | 0, 0.5, 1 |
F-2 | 3.5 | 150~400 | 14.7~39.4 | 0~50 | 5.7~16.3 | 28.76 | 0, 0.5, 1 |
F-3 | 4.5 | 150~400 | 14.7~39.4 | 0~50 | 4.4~12.4 | 36.98 | 0, 0.5, 1 |
过滤分离器 | A | VR惯性阻力 | B | VR黏性阻力 | 孔隙率 |
---|---|---|---|---|---|
F-3 | 0.018 | 0.0026 | 0.25 | 325 | 0.9 |
F-2 | 0.051 | 0.0074 | 0.04441 | 578 | |
F-1 | 0.062 | 0.0070 | 0.05812 | 7567 |
过滤分离器 | A | VR惯性阻力 | B | VR黏性阻力 | 孔隙率 |
---|---|---|---|---|---|
F-3 | 0.018 | 0.0026 | 0.25 | 325 | 0.9 |
F-2 | 0.051 | 0.0074 | 0.04441 | 578 | |
F-1 | 0.062 | 0.0070 | 0.05812 | 7567 |
基本参数 | 对应取值 |
---|---|
气、固两相体积分数(ak)/% | 气相:99.99;固相:(2.7~8.0)×10-10 |
气、固两相密度(ρk)/kg?m-3 | 气相:20.54~36.98;固相:3880 |
各项体积黏度( | 气相:1.19×10-5;颗粒相:1.19×10-8 |
渗透率(a) | 0.98 |
颗粒直径(dp)/μm | 0~50,取中位粒径25 |
固相的速度(up)/m?s-1 | 由质量流量初始条件决定,其值见 |
气相的速度(uk)/m?s-1 | 由质量流量初始条件决定,其值见 |
管径(D)/m | 见 |
颗粒的黏性系数(θs) | 可通过查阅颗粒黏性阻力系数与雷诺数曲线得到[ |
滤布厚度(Δn)/mm | 见 |
基本参数 | 对应取值 |
---|---|
气、固两相体积分数(ak)/% | 气相:99.99;固相:(2.7~8.0)×10-10 |
气、固两相密度(ρk)/kg?m-3 | 气相:20.54~36.98;固相:3880 |
各项体积黏度( | 气相:1.19×10-5;颗粒相:1.19×10-8 |
渗透率(a) | 0.98 |
颗粒直径(dp)/μm | 0~50,取中位粒径25 |
固相的速度(up)/m?s-1 | 由质量流量初始条件决定,其值见 |
气相的速度(uk)/m?s-1 | 由质量流量初始条件决定,其值见 |
管径(D)/m | 见 |
颗粒的黏性系数(θs) | 可通过查阅颗粒黏性阻力系数与雷诺数曲线得到[ |
滤布厚度(Δn)/mm | 见 |
1 | ZHANG Xiaoyuan, CHENG Shaoan, HUANG Xia, et al. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells[J]. Energy & Environmental Science, 2010, 3(5): 659. |
2 | HUANG Fenglin, XU Yunfei, PENG Bin, et al. Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(5): 932-940. |
3 | SANDULYAK A A, SANDULYAK A V, ERSHOV D V. Separator filter for iron impurities in ceramic suspensions. Magnetic field in matrix pores[J]. Glass and Ceramics, 2013, 70(5/6): 223-224. |
4 | 熊至宜, 姬忠礼, 冯亮, 等. 聚结型过滤元件过滤性能影响因素的测定与分析[J]. 化工学报, 2012, 63(6): 1742-1748. |
XIONG Zhiyi, JI Zhongli, FENG Liang, et al. Measurement and analysis on influencing factors for filtration performance of filter coalescer element[J]. CIESC Journal, 2012, 63(6): 1742-1748. | |
5 | FENG Z B, LONG Z W, CHEN Q Y. Assessment of various CFD models for predicting airflow and pressure drop through pleated filter system[J]. Building and Environment, 2014, 75(4): 132-141. |
6 | AZAM M S, NIU F, WANG D, et al. Experimental and CFD analysis of the effects of debris deposition across the fuel assemblies[J]. Nuclear Engineering and Design, 2018, 332: 238-251. |
7 | 刘震, 姬忠礼, 吴小林, 等. 高含硫天然气过滤单元性能优化[J]. 天然气工业, 2016, 36(3): 87-92. |
LIU Zhen, JI Zhongli, WU Xiaolin, et al. Performance improvement of a high-sulfur natural gas filtration unit[J]. Natural Gas Industry, 2016, 36(3): 87-92. | |
8 | LIU Z, JI Z L, ZHANG J F, et al. Influence of processing parameters on gas-liquid filtration performance of fibrous filter cartridge[J]. Procedia Engineering, 2015, 102: 911-920. |
9 | LIM T H, YEO S Y, LEE S H. Multidirectional evaluations of a carbon air filter to verify their lifespan and various performances[J]. Journal of Aerosol Science, 2018, 126: 205-216. |
10 | SONG C B, PARK H S, LEE K W. Experimental study of filter clogging with monodisperse PSL particles[J]. Powder Technology, 2006, 163(3): 152-159. |
11 | RIEFLER N, ULRICH M, MORSHÄUSER M, et al. Particle penetration in fiber filters[J]. Particuology, 2018, 40: 70-79. |
12 | THOMAS D, PACAULT S, CHARVET A, et al. Composite fibrous filters for nano-aerosol filtration: pressure drop and efficiency model[J]. Separation and Purification Technology, 2019, 215: 557-564. |
13 | THOMAS D, PENICOT P, CONTAL P, et al. Clogging of fibrous filters by solid aerosol particles experimental and modelling study[J]. Chemical Engineering Science, 2001, 56(11): 3549-3561. |
14 | BOURROUS S, BOUILLOUX L, OUF F X, et al. Measurement and modeling of pressure drop of HEPA filters clogged with ultrafine particles[J]. Powder Technology, 2016, 289: 109-117. |
15 | FENG Zhuangbo, LONG Zhengwei, CHEN Qingyan. Assessment of various CFD models for predicting airflow and pressure drop through pleated filter system[J]. Building and Environment, 2014, 75: 132-141. |
16 | 刘震, 姬忠礼, 于明俭, 等. 煤层气集输系统颗粒杂质分布及应对措施[J]. 煤炭学报, 2016, 41(9): 2281-2286. |
LIU Zhen, JI Zhongli, YU Mingjian, et al. Distribution characteristics and solutions on particulate matter in coalbed methane gathering system[J]. Journal of China Coal Society, 2016, 41(9): 2281-2286. | |
17 | 张星, 姬忠礼, 陈鸿海, 等. 高压天然气管道内粉尘在线检测方法[J]. 化工学报, 2010, 61(9): 2334-2339. |
ZHANG Xing, JI Zhongli, CHEN Honghai, et al. Method of dust on-line measurement in high-pressure natural gas pipeline[J]. CIESC Journal, 2010, 61(9): 2334-2339. | |
18 | 国家能源局. 天然气管道内粉尘检测方法: [S]. 北京: 石油工业出版社, 2012. |
National Energy Bureau of the People’s Republic of China. Methods of determining the particulate matter in natural gas pipeline: [S]. Beijing: Petroleum Industry Press, 2012. | |
19 | LU L F, WU X L, JI Z L, et al. Approach for correcting particle size distribution measured by optical particle counter in high-pressure gas pipes[J]. Applied Optics, 2018, 57(13): 3497-3506. |
20 | ADAMCZYK W P, KLIMANEK A, BIALECKI R A, et al. Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed[J]. Particuology, 2014, 15(4): 129-137. |
21 | 张迪. 液滴曳力数值计算方法研究及在干燥器中的应用[D]. 北京:清华大学, 2016: 1-16. |
ZHANG Di. Research on the numerical method to calculate the droplet’s drag force and its application on the steam drier[D]. Beijing: Tsinghua University, 2016: 1-16. | |
22 | INC B F. Fluent user’s guide: Fluent incorporated[CP]. Lebanon, 2010. |
23 | 李静海, 欧阳洁, 高士秋. 颗粒流体复杂系统的多尺度模拟[M]. 北京: 科学出版社, 2005. |
LI Jinghai, OUYANG Jie, GAO Shiqiu. Multi-scale simulation of particle-fluid complex systems[M]. Beijing: Science Press, 2005. | |
24 | 郭烈锦. 两相与多相流动力学[M]. 西安: 西安交通大学出版社, 2002: 340-360. |
Guo Liejin. Two-phase and multiphase flow mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 2002: 340-360. | |
25 | 安恩科, 张瑞, 韩益帆, 等. 多相湍流燃烧数值模拟的网格无关性分析[J]. 锅炉技术, 2018, 49(6): 54-58. |
AN Enke, ZHANG Rui, HAN Yifan, et al. Numerical simulation mesh independence of multi-phase turbulent combustion[J]. Boiler Technology, 2018, 49(6): 54-58. | |
26 | MOURET G, THOMAS D, CHAZELET S, et al. Penetration of nanoparticles through fibrous filters perforated with defined pinholes[J]. Journal of Aerosol Science, 2009, 40(9): 762-775. |
27 | XU C, XIE W, YU Y, et al. Photocatalytic and filtration performance study of TiO2/CNTs-filter for oil particle[J]. Process Safety and Environmental Protection, 2019, 123: 72-78. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[3] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[7] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[8] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[9] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[10] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[11] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[12] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[13] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[14] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[15] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 206
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 343
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |