Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 1849-1858.DOI: 10.16085/j.issn.1000-6613.2020-1989
• Special column:Industrial catalysis • Previous Articles Next Articles
WANG Risheng(), PENG Peng, LI Tingting, DU Ningning, WANG Youhe(), YAN Zifeng()
Received:
2020-09-30
Online:
2021-04-14
Published:
2021-04-05
Contact:
WANG Youhe,YAN Zifeng
王日升(), 彭鹏, 李婷婷, 杜宁宁, 王有和(), 阎子峰()
通讯作者:
王有和,阎子峰
作者简介:
王日升(1995—),男,硕士研究生。E-mail:基金资助:
CLC Number:
WANG Risheng, PENG Peng, LI Tingting, DU Ningning, WANG Youhe, YAN Zifeng. Synthesis and application of hierarchical zeolite materials[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1849-1858.
王日升, 彭鹏, 李婷婷, 杜宁宁, 王有和, 阎子峰. 多级孔沸石分子筛的制备及其催化应用研究进展[J]. 化工进展, 2021, 40(4): 1849-1858.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1989
1 | IUPAC. Manual of symbols and terminology for physicochemical quantities and units-appendixⅡ[J]. Chem., 1976, 46: 74-86. |
2 | XIE Zaiku, LIU Zhicheng, WANG Yangdong, et al. Applied catalysis for sustainable development of chemical industry in China[J]. National Science Review, 2015, 2(2): 167-182. |
3 | AL-SABAWI M, ATIAS J A, DE LASA H. Heterogeneous approach to the catalytic cracking of vacuum gas oil[J]. Industrial & Engineering Chemistry Research, 2008, 47(20): 7631-7641. |
4 | PEREZ-RAMIREZ J, CHRISTENSEN C H, EGEBLAD K, et al. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews, 2008, 37(11): 2530-2542. |
5 | SCHNEIDER D, MEHLHORN D, ZEIGERMANN P, et al. Transport properties of hierarchical micro-mesoporous materials[J]. Chemical Society Reviews, 2016, 45(12): 3439-3467. |
6 | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712. |
7 | DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821. |
8 | SUN Minghui, HUANG Shaozhuan, CHEN Lihua, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563. |
9 | MENG Lala, ZHANG Xiaofei, TANG Yusheng, et al. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes[J]. Scientific Reports, 2015, 5: 7910. |
10 | ZHANG Yingxi, YU Shuai, LOU Gaobo, et al. Review of macroporous materials as electrochemical supercapacitor electrodes[J]. Journal of Materials Science, 2017, 52(19): 11201-11228. |
11 | CHEN Lihua, SUN Minghui, WANG Zhao, et al. Hierarchically structured zeolites: from design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294. |
12 | PENG Peng, GAO Xionghou, YAN Zifeng, et al. Diffusion and catalyst efficiency in hierarchical zeolite catalysts[J]. National Science Review, 2020, 7(11): 1726-1742. |
13 | KLOETSTRA K R, ZANDBERGEN H W, JANSEN J C, et al. Overgrowth of mesoporous MCM-41 on faujasite[J]. Microporous Materials, 1996, 6(5/6): 287-293. |
14 | DAVIS M E. Mesoporous zeolites: preparation, characterization and applications[M]. New York: John Wiley & Sons, 2015. |
15 | LI Kunhao, VALLA J, GARCIA-MARTINEZ J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking[J]. ChemCatChem, 2014, 6(1): 46-66. |
16 | BAI Risheng, SONG Yue, LI Yi, et al. Creating hierarchical pores in zeolite catalysts[J]. Trends in Chemistry, 2019, 1(6): 601-611. |
17 | SUN Minghui, CHEN Chen, CHEN Lihua, et al. Hierarchically porous materials: synthesis strategies and emerging applications[J]. Frontiers of Chemical Science and Engineering, 2016, 10(3): 301-347. |
18 | WEI Ying, PARMENTIER T E, DE JONG K P, et al. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chemical Society Reviews, 2015, 44(20): 7234-7261. |
19 | YOUNG D A. Hydrocarbon conversion process and catalyst comprising a crystalline alumino-silicate leached with sodium hydroxide: US3326797[P]. 1967-06-20. |
20 | GROEN J C, BACH T, ZIESE U, et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J]. Journal of the American Chemical Society, 2005, 127(31): 10792-10793. |
21 | PÉREZ-RAMÍREZ J, VERBOEKEND D, BONILLA A, et al. Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J]. Advanced Functional Materials, 2009, 19(24): 3972-3979. |
22 | JI Yongjun, XU Hao, WANG Darui, et al. Mesoporous MCM-22 zeolites prepared through organic amine-assisted reversible structural change and protective desilication for catalysis of bulky molecules[J]. ACS Catalysis, 2013, 3(8): 1892-1901. |
23 | WANG Darui, ZHANG Lin, CHEN Li, et al. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking[J]. Journal of Materials Chemistry A, 2015, 3(7): 3511-3521. |
24 | DONK S VAN, JANSSEN A H, BITTER J H, et al. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catalysis Reviews, 2003, 45(2): 297-319. |
25 | ZUKAL A, PATZELOVÁ V, LOHSE U. Secondary porous structure of dealuminated Y zeolites[J]. Zeolites, 1986, 6(2): 133-136. |
26 | SHENG Qingtao, LING Kaicheng, LI Zhenrong, et al. Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene[J]. Fuel Processing Technology, 2013, 110: 73-78. |
27 | 刘欣梅, 阎子峰. 柠檬酸对USY分子筛的化学改性研究[J]. 化学学报, 2000, 58(8): 1009-1014. |
LIU Xinmei, YAN Zifeng. Modification of USY zeolites with citric acid[J]. Acta Chimica Sinica, 2000, 58(8): 1009-1014. | |
28 | LIU Xinmei, YAN Zifeng. Optimization of nanopores and acidity of USY zeolite by citric modification[J]. Catalysis Today, 2001, 68(1/2/3): 145-154. |
29 | CHANG Xingwen, HE Lifeng, LIANG Haining, et al. Screening of optimum condition for combined modification of ultra-stable Y zeolites using multi-hydroxyl carboxylic acid and phosphate[J]. Catalysis Today, 2010, 158(3/4): 198-204. |
30 | SCHMIDT I, BOISEN A, GUSTAVSSON E, et al. Carbon nanotube templated growth of mesoporous zeolite single crystals[J]. Chemistry of Materials, 2001, 13(12): 4416-4418. |
31 | SCHMIDT F, PAASCH S, BRUNNER E, et al. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J]. Microporous and Mesoporous Materials, 2012, 164: 214-221. |
32 | JANSSEN A H, SCHMIDT I, JACOBSEN C J H, et al. Exploratory study of mesopore templating with carbon during zeolite synthesis[J]. Microporous and Mesoporous Materials, 2003, 65(1): 59-75. |
33 | REN Zhibin, KIM E, PATTINSON S W, et al. Hybridizing photoactive zeolites with graphene: a powerful strategy towards superior photocatalytic properties[J]. Chemical Science, 2012, 3(1): 209-216. |
34 | LI Dan, QIU Ling, WANG Kun, et al. Growth of zeolite crystals with graphene oxide nanosheets[J]. Chemical Communications, 2012, 48(16): 2249-2251. |
35 | DU Jun, WANG Quanhua, WANG Yan, et al. A hierarchical zeolite beta with well-connected pores via using graphene oxide[J]. Materials Letters, 2019, 250: 139-142. |
36 | SERRANO D P, AGUADO J, MORALES G, et al. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization[J]. Chemistry of Materials, 2009, 21(4): 641-654. |
37 | SERRANO D P, PINNAVAIA T J, AGUADO J, et al. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: mediating the mesoporosity contribution by changing the organosilane type[J]. Catalysis Today, 2014, 227: 15-25. |
38 | CHOI Minkee, Hae Sung CHO, SRIVASTAVA R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Materials, 2006, 5(9): 718-723. |
39 | Dong-Hwan LEE, CHOI Minkee, YU Byung-Woo, et al. Organic functionalization of mesopore walls in hierarchically porous zeolites[J]. Chemical Communications, 2009(1): 74-76. |
40 | SHANBHAG Ganapati V, CHOI Minkee, KIM Jeongnam, et al. Mesoporous sodalite: a novel, stable solid catalyst for base-catalyzed organic transformations[J]. Journal of Catalysis, 2009, 264(1): 88-92. |
41 | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
42 | NA Kyungsu, CHOI Minkee, PARK Woojin, et al. Pillared MFI zeolite nanosheets of a single-unit-cell thickness[J]. Journal of the American Chemical Society, 2010, 132(12): 4169-4177. |
43 | NA Kyungsu, Changbum JO, KIM Jeongnam, et al. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science, 2011, 333(6040): 328-332. |
44 | SINGH B K, XU Dongdong, HAN Lu, et al. Synthesis of single-crystalline mesoporous ZSM-5 with three-dimensional pores via the self-assembly of a designed triply branched cationic surfactant[J]. Chemistry of Materials, 2014, 26(24): 7183-7188. |
45 | XU Dongdong, JING Zhifeng, CAO Fenglei, et al. Surfactants with aromatic-group tail and single quaternary ammonium head for directing single-crystalline mesostructured zeolite nanosheets[J]. Chemistry of Materials, 2014, 26(15): 4612-4619. |
46 | ZHANG Yunjuan, SHEN Xuefeng, GONG Zheng, et al. Single-crystalline MFI zeolite with sheet-like mesopores layered along the a axis[J]. Chemistry: a European Journal, 2019, 25(3): 738-742. |
47 | XU Dongdong, MA Yanhang, JING Zhifeng, et al. π-π Interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nature Communications, 2014, 5: 4262. |
48 | ZHANG Yunjuan, MA Yanhang, CHE Shunai. Synthesis of lamellar mesostructured ZSM-48 nanosheets[J]. Chemistry of Materials, 2018, 30(6): 1839-1843. |
49 | SHEN Xuefeng, MAO Wenting, MA Yanhang, et al. A hierarchical MFI zeolite with a two-dimensional square mesostructure[J]. Angewandte Chemie International Edition, 2018, 57(3): 724-728. |
50 | ZHANG Yunjuan, LUO Peng, XU Hao, et al. Hierarchical MFI zeolites with a single-crystalline sponge-like mesostructure[J]. Chemistry: a European Journal, 2018, 24(72): 19300-19308. |
51 | LUO H Yu, MICHAELIS V K, HODGES S, et al. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent[J]. Chemical Science, 2015, 6(11): 6320-6324. |
52 | KORE R, SRIVASTAVA R, SATPATI B. ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents[J]. Chemistry: a European Journal, 2014, 20(36): 11511-11521. |
53 | XU Le, JI Xinyi, LI Shenhui, et al. Self-assembly of cetyltrimethylammonium bromide and lamellar zeolite precursor for the preparation of hierarchical MWW zeolite[J]. Chemistry of Materials, 2016, 28(12): 4512-4521. |
54 | MENG Lingqian, MEZARI B, GOESTEN M G, et al. One-step synthesis of hierarchical ZSM-5 using cetyltrimethylammonium as mesoporogen and structure-directing agent[J]. Chemistry of Materials, 2017, 29(9): 4091-4096. |
55 | ZHU Xiaochun, GOESTEN M G, KOEKKOEK A J J, et al. Establishing hierarchy: the chain of events leading to the formation of silicalite-1 nanosheets[J]. Chemical Science, 2016, 7(10): 6506-6513. |
56 | CHEN Lihua, LI Xiaoyun, ROOKE J C, et al. Hierarchically structured zeolites: synthesis, mass transport properties and applications[J]. Journal of Materials Chemistry, 2012, 22(34): 17381-17403. |
57 | YANG Xiaoyu, TIAN Ge, CHEN Lihua, et al. Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance[J]. Chemistry: a European Journal, 2011, 17(52): 14987-14995. |
58 | KIM Jeongnam, CHOI Minkee, RYOO Ryong. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. Journal of Catalysis, 2010, 269(1): 219-228. |
59 | YANG Xiaoyu, CHEN Lihua, LI Yu, et al. Hierarchically porous materials: synthesis strategies and structure design[J]. Chemical Society Reviews, 2017, 46(2): 481-558. |
60 | DONG A G, REN N, YANG W L, et al. Preparation of hollow zeolite spheres and three-dimensionally ordered macroporous zeolite monoliths with functionalized interiors[J]. Advanced Functional Materials, 2003, 13(12): 943-948. |
61 | MACHOKE A G, BELTRÁN A M, INAYAT A, et al. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores[J]. Advanced Materials, 2015, 27(6): 1066-1070. |
62 | WEISSENBERGER T, REIPRICH B, MACHOKE A G, et al. Hierarchical MFI type zeolites with intracrystalline macropores: the effect of the macropore size on the deactivation behaviour in the MTO reaction[J]. Catalysis Science & Technology, 2019, 9(12): 3259-3269. |
63 | WEISSENBERGER T, MACHOKE A G, BAUER J, et al. Hierarchical ZSM-5 catalysts: the effect of different intracrystalline pore dimensions on catalyst deactivation behaviour in the MTO reaction[J]. ChemCatChem, 2020, 12(9): 2461-2468. |
64 | WEISSENBERGER T, LEONHARDT R, ZUBIRI B A, et al. Synthesis and characterisation of hierarchically structured titanium silicalite-1 zeolites with large intracrystalline macropores[J]. Chemistry: a European Journal, 2019, 25(63): 14430-14440. |
65 | ZHANG Jian, WANG Ya, DONG Lei, et al. Organic-free one-step synthesis of macro/microporous LTA zeolite and its encapsulation of metal nanoparticles[J]. Microporous and Mesoporous Materials, 2020, 293: 109813. |
66 | LI Xin, LI Wenbin, REZAEI F, et al. Catalytic cracking of n-hexane for producing light olefins on 3D-printed monoliths of MFI and FAU zeolites[J]. Chemical Engineering Journal, 2018, 333: 545-553. |
67 | HĘDRZAK E, WEGRZYNOWICZ A, RACHWALIK R, et al. Monoliths with MFI zeolite layers prepared with the assistance of 3D printing: characterization and performance in the gas phase isomerization of alpha-pinene[J]. Applied Catalysis A: General, 2019, 579: 75-85. |
68 | WANG Shuang, BAI Pu, WEI Yingzhen, et al. Three-dimensional-printed core-shell structured MFI-type zeolite monoliths for volatile organic compound capture under humid conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38955-38963. |
69 | CHEN Lihua, LI Xiaoyun, TIAN Ge, et al. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure[J]. Angewandte Chemie International Edition, 2011, 50(47): 11156-11161. |
70 | WANG Yan, REN Fenfen, PAN Dahai, et al. A hierarchically micro-meso-macroporous zeolite CaA for methanol conversion to dimethyl ether[J]. Crystals, 2016, 6(11): 155. |
71 | TRAVKINA O S, AGLIULLIN M R, FILIPPOVA N A, et al. Template-free synthesis of high degree crystallinity zeolite Y with micro-meso-macroporous structure[J]. RSC Advances, 2017, 7(52): 32581-32590. |
72 | PAVLOV M, TRAVKINA O, KUTEPOV B. Grained binder-free zeolites: synthesis and properties[J]. Catalysis in Industry, 2012, 4(1): 11-18. |
73 | GORSHUNOVA K K, TRAVKINA O S, PAVLOV M L, et al. Synthesis of binder-free granulated MOR-type zeolite with hierarchical pore structure[J]. Russian Journal of Applied Chemistry, 2013, 86(12): 1805-1810. |
74 | TRAVKINA O S, AGLIULLIN M R, KUVATOVA R Z, et al. New method of synthesis of hierarchical mordenite of high crystallinity and its application in hydroizomerization of benzene-n-heptane mixture[J]. Journal of Porous Materials, 2019, 26(4): 995-1004. |
75 | SUN Minghui, CHEN Lihua, YU Shen, et al. Micron-sized zeolite beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance[J]. Angewandte Chemie: International Edition, 2020, 59(44): 19582-19591. |
76 | 孙明慧, 陈丽华, 苏宝连. 有序大孔-介孔-微孔多级孔分子筛[C]//中国化学会分子筛专业委员会. 第18届全国分子筛学术大会论文集(下). 中国上海: 华东师范大学上海市绿色化学与化工过程绿色化重点实验室, 2015. |
SUN Minghui, CHEN Lihua, SU Baolian. Ordered micro-meso-macroporous hierarchical zeolite[C]// Chinese Zeolite Association. The 18th Chinese Zeolite Conference. Shanghai, China: Shanghai Key Laboratory of Green Chemistry and Chemical Process, 2015. | |
77 | SUN Minghui, ZHOU Jian, HU Zhiyi, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency[J]. Matter, 2020, 3(4): 1226-1245. |
[1] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[2] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[3] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[4] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[5] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[6] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[7] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[8] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[9] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[10] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[11] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[12] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[13] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[14] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
[15] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |