Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4231-4241.DOI: 10.16085/j.issn.1000-6613.2020-1941
• Industrial catalysis • Previous Articles Next Articles
ZHENG Peng1,2(), LIU Jianguo1,2,3(), ZHANG Qi1,2()
Received:
2020-09-22
Online:
2021-08-12
Published:
2021-08-05
Contact:
LIU Jianguo,ZHANG Qi
通讯作者:
刘建国,张琦
作者简介:
郑鹏(1994—),男,硕士研究生,研究方向为生物质精细化工品制备。E-mail:基金资助:
CLC Number:
ZHENG Peng, LIU Jianguo, ZHANG Qi. Application of TEMPO in the catalytic alcohol oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4231-4241.
郑鹏, 刘建国, 张琦. 2,2,6,6-四甲基哌啶-1-氧自由基在醇氧化研究中的应用[J]. 化工进展, 2021, 40(8): 4231-4241.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1941
1 | MUZART J. Palladium-catalysed oxidation of primary and secondary alcohols[J]. Tetrahedron, 2003, 59(31): 5789-5816. |
2 | ZHAN B Z, THOMPSON A. Recent developments in the aerobic oxidation of alcohols[J]. Tetrahedron, 2004, 60(13): 2917-2935. |
3 | 余依玲. 固载化TEMPO的制备及其对醇类物质催化氧化性能的研究[D]. 太原: 中北大学, 2014. |
YU Yiling. Preparation of immobilized TEMPO catalyst and its catalytic property in oxidation of alcohols[D]. Taiyuan: North University of China, 2014. | |
4 | 石先莹, 韩晓燕, 马文娟, 等. 过渡金属催化醇氧化反应的研究进展[J]. 有机化学, 2011, 31(3): 297-305. |
SHI Xianying, HAN Xiaoyan, MA Wenjuan, et al. Recent progress in oxidation of alcohols catalyzed by transition metal[J]. Chinese Journal of Organic Chemistry, 2011, 31(3): 297-305. | |
5 | ADAM W, SAHA-MÖLLER C R, GANESHPURE P A. Synthetic applications of nonmetal catalysts for homogeneous oxidations[J]. Chemical Reviews, 2001, 101(11): 3499-3548. |
6 | DE NOOY A E J, BESEMER A C, BEKKUM H VAN, et al. TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains[J]. Macromolecules, 1996, 29(20): 6541-6547. |
7 | GOLUBEV V A, ROZANTSEV É G, NEIMAN M B. Some reactions of free iminoxyl radicals with the participation of the unpaired electron[J]. Bulletin of the Academy of Sciences of the USSR: Division of Chemical Science, 1965, 14(11): 1898-1904. |
8 | LUCIO ANELLI P, BIFFI C, MONTANARI F, et al. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions[J]. The Journal of Organic Chemistry, 1987, 52(12): 2559-2562. |
9 | RYCHNOVSKY S D, VAIDYANATHAN R. TEMPO-catalyzed oxidations of alcohols using m-CPBA: the role of halide ions[J]. The Journal of Organic Chemistry, 1999, 64(1): 310-312. |
10 | BOLM C, MAGNUS A S, HILDEBRAND J P. Catalytic synthesis of aldehydes and ketones under mild conditions using TEMPO/oxone[J]. Organic Letters, 2000, 2(8): 1173-1175. |
11 | LIU R H, LIANG X M, DONG C Y, et al. Transition-metal-free: a highly efficient catalytic aerobic alcohol oxidation process[J]. Journal of the American Chemical Society, 2004, 126(13): 4112-4113. |
12 | BJØRSVIK H R, LIGUORI L, COSTANTINO F, et al. A new modified “montanari oxidation process” by means of chlorine dissolved in the reaction solvent as oxidant and TEMPO as catalyst: oxidation of 3-S-quinuclidinol to 3-quinuclidinone[J]. Organic Process Research & Development, 2002, 6(2): 197-200. |
13 | MILLER R A, HOERRNER R S. Iodine as a chemoselective reoxidant of TEMPO: application to the oxidation of alcohols to aldehydes and ketones[J]. Organic Letters, 2003, 5(3): 285-287. |
14 | 张华. 非过渡金属体系催化硫醚和醇有氧氧化的研究[D]. 大连: 大连理工大学, 2012. |
ZHANG Hua. The studies of transition-metal-free system catalyzed aerobic oxidation of sulfides and alcohols[D]. Dalian: Dalian University of Technology, 2012. | |
15 | 张同伟. 固载4-OH-TEMPO催化剂对醇选择性空气氧化的研究[D]. 大连: 大连理工大学, 2017. |
ZHANG Tongwei. Study on selective oxidation of alcohols with air by supported 4-OH-TEMPO catalyst[D]. Dalian: Dalian University of Technology, 2017. | |
16 | RAFIEE M, KONZ Z M, GRAAF M D, et al. Electrochemical oxidation of alcohols and aldehydes to carboxylic acids catalyzed by 4-acetamido-TEMPO: an alternative to “anelli” and “pinnick” oxidations[J]. ACS Catalysis, 2018, 8(7): 6738-6744. |
17 | KARIMI B, GHAHREMANI M, CIRIMINNA R, et al. New stable catalytic electrodes functionalized with TEMPO for the waste-free oxidation of alcohol[J]. Organic Process Research & Development, 2018, 22(9): 1298-1305. |
18 | DELORME A, SANS V, LICENCE P, et al. Tuning the reactivity of TEMPO during electrocatalytic alcohol oxidations in room-temperature ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11691-11699. |
19 | 张锁江, 徐春明, 吕兴梅, 等. 离子液体与绿色化学[M]. 北京:科学出版社, 2009. |
ZHANG S J, XU CH M, LYU X M, et al. Ionic liquids and green chemistry[M]. Beijing: Science Press, 2009. | |
20 | SEMMELHACK M F, SCHMID C R, CORTES D A, et al. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion[J]. Journal of the American Chemical Society, 1984, 106(11): 3374-3376. |
21 | BETZEMEIER B, CAVAZZINI M, QUICI S, et al. Copper-catalyzed aerobic oxidation of alcohols under fluorous biphasic conditions[J]. Tetrahedron Letters, 2000, 41(22): 4343-4346. |
22 | VELUSAMY S, SRINIVASAN A, PUNNIYAMURTHY T. Copper(Ⅱ) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen[J]. Tetrahedron Letters, 2006, 47(6): 923-926. |
23 | LIU L, JI L Y, WEI Y Y. Base promoted aerobic oxidation of alcohols to corresponding aldehydes or ketones catalyzed by CuCl/TEMPO[J]. Catalysis Communications, 2008, 9(6): 1379-1382. |
24 | HOOVER J M, RYLAND B L, STAHL S S. Mechanism of copper(Ⅰ)/TEMPO-catalyzed aerobic alcohol oxidation[J]. Journal of the American Chemical Society, 2013, 135(6): 2357-2367. |
25 | GUPTA M, SHARMA P, GUPTA M, et al. Silica functionalized Cu(Ⅱ) catalysed selective oxidation of benzyl alcohols using TEMPO and molecular oxygen as an oxidant[J]. Journal of Chemical Sciences, 2015, 127(8): 1485-1489. |
26 | YANG X J, MAO J C, ZHANG H, et al. Copper-catalyzed aerobic oxidation reaction of benzyl alcohol in water under base-free condition[J]. Chinese Journal of Organic Chemistry, 2018, 38(10): 2780. |
27 | WANG L Y, BIE Z X, SHANG S S, et al. Cu-catalyzed aerobic oxidation of alcohols with a multi-functional NMI-TEMPO[J]. Chemistry Select, 2018, 3(12): 3386-3390. |
28 | LIU W H, YANG J H, CAI J. Aerobic alcohol oxidation catalyzed by CuO-rectorite/TEMPO in water[J]. Research on Chemical Intermediates, 2019, 45(2): 549-561. |
29 | LIN J Y, LIN K Y A. Catalytic conversion of a lignin model compound to value-added products using Cu/TEMPO-catalyzed aerobic oxidation[J]. Biomass Conversion and Biorefinery, 2019, 9(3): 617-623. |
30 | DIJKSMAN A, ARENDS I W C E, SHELDON R A. Efficient ruthenium-TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones[J]. Chemical Communications, 1999(16): 1591-1592. |
31 | DIJKSMAN A, MARINO-GONZÁLEZ A, MAIRATA I P A, et al. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system[J]. Journal of the American Chemical Society, 2001, 123(28): 6826-6833. |
32 | LIU D W, ZHOU H X, GU X Y, et al. TEMPO-mediated oxidation of primary alcohols to aldehydes under visible light and air[J]. Chinese Journal of Chemistry, 2014, 32(2): 117-122. |
33 | WANG N, LIU R, CHEN J, et al. NaNO2-activated, iron-TEMPO catalyst system for aerobic alcohol oxidation under mild conditions[J]. Chemical Communications, 2005(42): 5322-5324. |
34 | 王心亮, 梁鑫淼. 温和条件下Fe(NO3)3/4-OH-TEMPO催化需氧氧化醇制备羰基化合物[J]. 催化学报, 2008, 29(9): 935-939. |
WANG Xinliang, LIANG Xinmiao. Aerobic oxidation of alcohols to carbonyl compounds catalyzed by Fe(NO3)3/4-OH-TEMPO under mild conditions[J]. Chinese Journal of Catalysis, 2008, 29(9): 935-939. | |
35 | LIU J X, MA S M. Room temperature Fe(NO3)3·9H2O/TEMPO/NaCl-catalyzed aerobic oxidation of homopropargylic alcohols[J]. Tetrahedron, 2013, 69(47): 10161-10167. |
36 | JIANG X G, LIU J X, MA S M. Iron-catalyzed aerobic oxidation of alcohols: lower cost and improved selectivity[J]. Organic Process Research & Development, 2019, 23(5): 825-835. |
37 | CECCHETTO A, FONTANA F, MINISCI F, et al. Effecient Mn-Cu and Mn-Co-TEMPO-catalysed oxidation of alcohols into aldehydes and ketones by oxygen under mild conditions[J]. Tetrahedron Letters, 2001, 42(38): 6651-6653. |
38 | 付罗岭. 硅胶固载TEMPO吸附NOx催化体系对醇类的选择氧化研究[D]. 大连: 大连理工大学, 2013. |
FU Luoling. Study on silica supported TEMPO/NOx catalytic systems and their application in selective oxidation of alcohols[D]. Dalian: Dalian University of Technology, 2013. | |
39 | FEY T, FISCHER H, BACHMANN S, et al. Silica-supported TEMPO catalysts: synthesis and application in the anelli oxidation of alcohols[J]. The Journal of Organic Chemistry, 2001, 66(24): 8154-8159. |
40 | GHEORGHE A, MATSUNO A, REISER O. Expedient immobilization of TEMPO by copper-catalyzed azide-alkyne [3+2]-cycloaddition onto polystyrene resin[J]. Advanced Synthesis & Catalysis, 2007, 349(4/5): 486. |
41 | KARIMI B, BIGLARI A, CLARK J, et al. Green, transition-metal-free aerobic oxidation of alcohols using a highly durable supported organocatalyst[J]. Angewandte Chemie, 2007, 119(38): 7348-7351. |
42 | SCHÄTZ A, GRASS R N, STARK W J, et al. TEMPO supported on magnetic C/Co-nanoparticles: a highly active and recyclable organocatalyst[J]. Chemistry, 2008, 14(27): 8262-8266. |
43 | TUCKER-SCHWARTZ A K, GARRELL R L. Simple preparation and application of TEMPO-coated Fe3O4 superparamagnetic nanoparticles for selective oxidation of alcohols[J]. Chemistry, 2010, 16(42): 12718-12726. |
44 | WANG Y M, SONG X Y, SHAO S H, et al. An efficient, soluble, and recyclable multiwalled carbon nanotubes-supported TEMPO for oxidation of alcohols[J]. ChemInform, 2013, . |
45 | 吕风莲. TEMPO-非贵重金属(Fe,Cu)催化体系的构建及对分子氧选择性氧化醇反应的催化性能[D]. 天津: 河北工业大学, 2015. |
Fenglian LYU. Construction of catalytic systems based on TEMPO and non-noble metals(Fe, Cu) and their catalytic performances on the aerobic oxidation of alcohols[D]. Tianjin: Hebei University of Technology, 2015. | |
46 | SUN Y B, CAO C Y, WEI F, et al. Nanocarbon-based TEMPO as stable heterogeneous catalysts for partial oxidation of alcohols[J]. Science Bulletin, 2016, 61(10): 772-777. |
47 | UOZUMI Y, SUGIYAMA Y. Continuous-flow oxidation of alcohols on graft-copolymer-supported TEMPO[J]. Synfacts, 2018, 14(9): 0989. |
48 | SCHULZE J S, MIGENDA J, BECKER M, et al. TEMPO-functionalized mesoporous silica particles as heterogeneous oxidation catalysts in flow[J]. Journal of Materials Chemistry A, 2020, 8(7): 4107-4117. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |