Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (8): 4278-4289.DOI: 10.16085/j.issn.1000-6613.2020-1849
• Materials science and technology • Previous Articles Next Articles
QIN Yu1,2(), TANG Yuanxin1, RUAN Pengzhen1, WANG Weina1(), CHEN Bin2
Received:
2020-09-14
Online:
2021-08-12
Published:
2021-08-05
Contact:
WANG Weina
秦煜1,2(), 唐元鑫1, 阮鹏臻1, 王威娜1(), 陈斌2
通讯作者:
王威娜
作者简介:
秦煜(1983—),男,博士,高级工程师,博士生导师,研究方向为智能材料结构等。E-mail:基金资助:
CLC Number:
QIN Yu, TANG Yuanxin, RUAN Pengzhen, WANG Weina, CHEN Bin. Progress in multi-scale study on piezoresistive effect of carbon nanotube cement-based composite[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4278-4289.
秦煜, 唐元鑫, 阮鹏臻, 王威娜, 陈斌. 碳纳米管水泥基复合材料压阻效应的多尺度研究进展[J]. 化工进展, 2021, 40(8): 4278-4289.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1849
1 | AL-SALEH M H, SUNDARARAJ U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon, 2009, 47(7): 1738-1746. |
2 | WANG B, GUO Z, HAN Y, et al. Electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites[J]. Construction & Building Materials, 2013, 46: 98-103. |
3 | SINGH A P, GUPTA B K, MISHRA M, et al. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties[J]. Carbon, 2013, 56: 86-96. |
4 | LI H, ZHANG Q, XIAO H. Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites[J]. Cold Regions Science and Technology, 2013, 86: 22-35. |
5 | 李小霞, 常媛. 新型水泥基复合材料的制备及应力对其力学和热电性能的影响[J]. 硅酸盐通报, 2020, 39(5): 1478-1482. |
LI Xiaoxia, CHANG Yuan. Preparation of new cement-based composites and effects of stress on its mechanical and thermoelectric properties[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1478-1482. | |
6 | QIN J J, YAO W, ZUO J Q. Temperature sensitive properties of hybrid carbon nanotube/carbon fiber cement-based materials[J]. Key Engineering Materials, 2013, 539: 89-93. |
7 | 欧进萍, 关新春, 李惠. 应力自感知水泥基复合材料及其传感器的研究进展[J]. 复合材料学报, 2006, 23(4): 1-8. |
Jinping OU, GUAN Xinchun, LI Hui. State-of-the-art of stress-sensing cement composite material and sensors[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 1-8. | |
8 | 王彩辉, 孙伟, 蒋金洋, 等. 水泥基复合材料在多尺度方面的研究进展[J]. 硅酸盐学报, 2011, 39(4): 726-738. |
WANG Caihui, SUN Wei, JIANG Jinyang, et al. Development on cement-based composite materials in multi-scale[J]. Journal of the Chinese Ceramic Society, 2011, 39(4): 726-738. | |
9 | SOBOLKINA A, MECHTCHERINE V, KHAVRUS V, et al. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix[J]. Cement and Concrete Composites, 2012, 34(10): 1104-1113. |
10 | VAISMAN L, WAGNER H D, MAROM G. The role of surfactants in dispersion of carbon nanotubes[J]. Advances in Colloid and Interface Science, 2006,128/129/130: 37-46. |
11 | VAISMAN L, MAROM G, WAGNER H D. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers[J]. Advanced Functional Materials, 2006, 16(3): 357-363. |
12 | 武玺旺, 肖建中, 夏风, 等. 碳纳米管的分散方法与分散机理[J]. 材料导报, 2011, 25(9): 16-19. |
WU Xiwang, XIAO Jianzhong, XIA Feng, et al. Dispersion methods and dispersion mechanism of carbon nanotubes[J]. Materials Review, 2011, 25(9): 16-19. | |
13 | 施韬, 朱敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5): 1033-1049. |
SHI Tao, ZHU Min, LI Zexin, et al. Review of research progress on carbon nanotubes modified cementitious composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1033-1049. | |
14 | 朱平, 邓广辉, 邵旭东. 碳纳米管在水泥基复合材料中的分散方法研究进展[J]. 材料导报, 2018, 32(1): 149-158. |
ZHU Ping, DENG Guanghui, SHAO Xudong. Review on dispersion methods of carbon nanotubes in cement based composites[J]. Materials Review, 2018, 32(1): 149-158. | |
15 | PIERARD N, FONSECA A, KONYA Z, et al. Production of short carbon nanotubes with open tips by ball milling[J]. Chemical Physics Letters, 2001, 335(1/2): 1-8. |
16 | SANDLER J, SHAFFER M S P, PRASSE T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer, 1999, 40(21): 5967-5971. |
17 | CHENG Q, DEBNATH S, GREGAN E, et al. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties[J]. The Journal of Physical Chemistry C, 2010, 114(19): 8821-8827. |
18 | 马雪平. 碳纳米管水泥基复合材料压敏性能研究[D]. 济南: 山东大学, 2013. |
MA Xueping. Piezoresistivity of carbon nanotubes-cement composite[D]. Jinan: Shandong University, 2013. | |
19 | DATSYUK V, KALYVA M, PAPAGELIS K, et al. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon, 2008,46(6): 833-840. |
20 | 张姣龙, 朱洪波, 柳献, 等. 碳纳米管在水泥基复合材料中的分散性研究[J]. 武汉理工大学学报, 2012, 34(5): 6-9. |
ZHANG Jiaolong, ZHU Hongbo, LIU Xian, et al. Research on dispersion of carbon nano tubes in cement based composite[J]. Journal of Wuhan University of Technology, 2012, 34(5): 6-9. | |
21 | LI Q, MA Y, MAO C, et al. Grafting modification and structural degradation of multi-walled carbon nanotubes under the effect of ultrasonics sonochemistry[J]. Ultrasonics-Sonochemistry, 2009, 16(6): 752-757. |
22 | YU J R, GROSSIORD N, KONING C E, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution[J]. Carbon, 2007, 45(3): 618-623. |
23 | 罗健林, 段忠东, 赵铁军. 纳米碳管水泥基复合材料的电阻性能[J]. 哈尔滨工业大学学报, 2010, 42(8): 1237-1241. |
LUO Jianlin, DUAN Zhongdong, ZHAO Tiejun. Properties of electrical resistivity of fiber-reinforced cement composites with multi-walled carbon nanotubes[J]. Journal of Harbin Institute of Technology, 2010, 42(8): 1237-1241. | |
24 | 韩瑜. 碳纳米管的分散性及其水泥基复合材料力学性能[D]. 大连:大连理工大学, 2013. |
HAN Yu. Dispersion of carbon nanotubes and the mechanical properties of carbon nanotubes reinforced cement-based composites [D]. Dalian: Dalian University of Technology, 2013. | |
25 | ZHAO G, LIU K, LIN S, et al. Application of a carbon nanotube modified electrode in anodic stripping voltammetry for determination of trace amounts of 6-benzylaminopurine[J]. Microchimica Acta, 2003, 143(4): 255-260. |
26 | JAROLIM T, LABAJ M, HELA R, et al. Carbon nanotubes in cementitious composites: dispersion, implementation, and influence on mechanical characteristics[J]. Advances in Materials Science and Engineering, 2016, 2016: 1-6. |
27 | 尚旭, 景希玮, 徐健, 等. 不同分子量聚乙烯吡咯烷酮对多壁碳纳米管分散性能的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 883-890. |
SHANG Xu, JING Xiwei, XU Jian, et al. Influence of polyvinylpyrrolidone with different molecular weights on the dispersion of multiwalled carbon nanotubes[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2019, 45(6): 883-890. | |
28 | KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010, 40(7): 1052-1059. |
29 | ZOU B, CHEN S J, KORAYEM A H, et al. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes[J]. Carbon, 2015, 85: 212-220. |
30 | METAXA Z S, KONSTA-GDOUTOS M S, SHAH S P. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency[J]. Cement and Concrete Composites, 2013, 36: 25-32. |
31 | CONSTANTINIDES G, ULM F. The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling[J]. Cement and Concrete Research, 2004, 34(1): 67-80. |
32 | KIM H K, PARK I S, LEE H K. Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio[J]. Composite Structures, 2014, 116: 713-719. |
33 | FANECA G, SEGURA I, TORRENTS J M, et al. Development of conductive cementitious materials using recycled carbon fibres[J]. Cement and Concrete Composites, 2018, 92: 135-144. |
34 | 李庚英. 碳纳米管水泥基材料的力学性能及机敏性能[D]. 上海:同济大学, 2006. |
LI Gengying. Mechanical properties and alertness of carbon nanotubes cement-based materials[D]. Shanghai: Tongji University, 2006. | |
35 | MONTEIRO A O, CACHIM P B, COSTA P M F J. Self-sensing piezoresistive cement composite loaded with carbon black particles[J]. Cement and Concrete Composites, 2017, 81: 59-65. |
36 | 刘小艳, 许悦, 刘磊. 碳纳米管/水泥基复合材料导电机理的研究[J]. 三峡大学学报(自然科学版), 2013, 35(6): 71-73. |
LIU Xiaoyan, XU Yue, LIU Lei. Study of conductive mechanism of carbon nanotubes reinforced cement paste materials[J]. Journal of China Three Gorges University (Natural Sciences), 2013, 35(6): 71-73. | |
37 | 饶瑞, 陈洋臣, 刘春晖, 等. 电流及电压对钢纤维石墨导电混凝土电阻率的影响[J]. 混凝土与水泥制品, 2017(2): 50-54. |
RAO Rui, CHEN Yangchen, LIU Chunhui, et al. Influence of current and voltage on resistivity of steel fiber graphite electric conductive concrete[J]. China Concrete and Cement Products, 2017(2): 50-54. | |
38 | 姜海峰. 自感知碳纳米管水泥基复合材料及其在交通探测中的应用[D]. 哈尔滨:哈尔滨工业大学, 2012. |
JIANG Haifeng. Self-sensing carbon nanotube cement-based composites and their application in traffic detection[D]. Harbin: Harbin Institute of Technology, 2012. | |
39 | ZHANG L, HAN B, OUYANG J, et al. Multifunctionality of cement based composite with electrostatic self-assembled CNT/NCB composite filler[J]. Archives of Civil and Mechanical Engineering, 2017, 17(2): 354-364. |
40 | ZHANG L, DING S, DONG S, et al. Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers[J]. Materials Research Express, 2017, 4(12): 125704. |
41 | PARVANEH V, KHIABANI S H. Mechanical and piezoresistive properties of self-sensing smart concretes reinforced by carbon nanotubes[J]. Mechanics of Advanced Materials and Structures, 2019, 26(11): 993-1000. |
42 | 罗健林, 段忠东. 纳米碳管/水泥基复合材料的阻尼及力学性能[J]. 北京化工大学学报(自然科学版), 2008, 35(6): 63-66. |
LUO Jianlin, DUAN Zhongdong. Damping capacity and flexural strength of multi-walled carbon nanotube/cement composites[J]. Journal of Beijing University of Chemical. Technology (Natural Science Edition), 2008, 35(6): 63-66. | |
43 | WOO N I, HAMID S, HK L. Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites[J]. Smart Struct. Syst., 2016, 18(2): 217-231. |
44 | EFTEKHARI M, MOHAMMADI S. Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading[J]. International Journal of Impact Engineering, 2016, 87: 55-64. |
45 | HAN B, YU X, OU J. Effect of water content on the piezoresistivity of MWNT/cement composites[J]. Journal of Materials Science, 2010, 45(14): 3714-3719. |
46 | SONG C, CHOI S. Moisture-dependent piezoresistive responses of CNT-embedded cementitious composites[J]. Composite Structures, 2017, 170: 103-110. |
47 | AZHARI F, BANTHIA N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement and Concrete Composites, 2012, 34(7): 866-873. |
48 | 刘巧玲. 碳纳米管增强水泥基复合材料多尺度性能及机理研究[D]. 南京:东南大学, 2015. |
LIU Qiaoling. Multi-scale properties and mechanism of carbon nanotubes/cement nanocomposites[D]. Nanjing: Southeast University, 2015. | |
49 | KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites[J]. Cement & concrete composites, 2010, 32(2): 110-115. |
50 | LI G Y, WANG P M, ZHAO X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon, 2005, 43(6): 1239-1245. |
51 | HU Y, LUO D, LI P, et al. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes[J]. Construction & Building Materials, 2014, 70: 332-338. |
52 | LI G Y, WANG P M, ZHAO X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites[J]. Cement and Concrete Composites, 2007, 29(5): 377-382. |
53 | MENDOZA REALES O A, DIAS TOLEDO FILHO R. A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites[J]. Construction and Building Materials, 2017, 154: 697-710. |
54 | AMIN M S, EL-GAMAL S M A, HASHEM F S. Fire resistance and mechanical properties of carbon nanotubes-clay bricks wastes (Homra) composites cement[J]. Construction and Building Materials, 2015, 98: 237-249. |
55 | R S, G D, S D M. Physical properties of carbon nanotubes[M]. London: Imperial College Press, 1998. |
56 | LIU L, JAYANTHI C S, TANG M, et al. Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: a nanoscale electromechanical switch?[J]. Phys. Rev. Lett., 2000, 84(21): 4950-4953. |
57 | ZHANG L, DING S, LI L, et al. Effect of characteristics of assembly unit of CNT/NCB composite fillers on properties of smart cement-based materials[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 303-320. |
58 | KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: an outlook[J]. Science, 2018, 362(6414): 547-553. |
59 | SÁEZ DE IBARRA Y, GAITERO J J, ERKIZIA E, et al. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions[J]. Physica Status Solidi (A), 2006, 203(6): 1076-1081. |
60 | YU S, WANG X, XIANG H, et al. Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure[J]. Carbon, 2018, 140: 1-9. |
61 | CUI H, YANG S, MEMON S A. Development of carbon nanotube modified cement paste with microencapsulated phase-change material for structural-functional integrated application[J]. Int. J. Mol. Sci., 2015, 16(4): 8027-8039. |
62 | 刘巧玲, 李汉彩, 彭玉娇, 等. 多壁碳纳米管增强水泥基复合材料的纳米力学性能[J]. 复合材料学报, 2019, 37(4): 952-961. |
LIU Qiaoling, LI Hancai, PENG Yujiao, et al. Nanomechanical properties of MWCNTs/cementitious composites[J]. Acta Mater. Compos. Sin., 2019, 37(4): 952-961. | |
63 | NOCHAIYA T, CHAIPANICH A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials[J]. Applied Surface Science, 2011, 257(6): 1941-1945. |
64 | SHKLOVSKII B I, EFROS A L. Electronic properties of doped semiconductors[M]. Berlin: Springer Science & Business Media, 2013. |
65 | HAN B, YU X, OU J. Multifunctional and smart carbon nanotube reinforced cement-based materials[M]. Berlin: Springer, 2011. |
66 | LEE S J, YOU I, ZI G, et al. Experimental investigation of the piezoresistive properties of cement composites with hybrid carbon fibers and nanotubes[J]. Sensors, 2017, 17(11): 2516. |
67 | HU N, KARUBE Y, YAN C, et al. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor[J]. Acta Materialia, 2008, 56(13): 2929-2936. |
68 | LANDAUER R. Electrical conductivity in inhomogeneous media [C]// In American Institute of Physics Conference Proceedings, New York, 1978. |
69 | MCLACHLAN D S. Measurement and analysis of a model dual conductivity medium using a generalized effective medium theory[J]. Physica A: Statistical Mechanics and its Applications, 1989, 157(1): 188-191. |
70 | 罗健林. 碳纳米管水泥基复合材料制备及功能性能研究[D]. 哈尔滨:哈尔滨工业大学, 2009. |
LUO Jianlin. Fabrication and functional prorperties of multi-walled carbon nanotube/cement composites[D]. Harbin: Harbin Institute of Technology, 2009. | |
71 | 姚斌. 环境因素对纳米碳纤维混凝土压敏特性的影响[D]. 哈尔滨:哈尔滨工业大学, 2013. |
YAO Bin. Influence of environmental conditions on the piezoreresistive effect of carbon nanofiber concrete[D]. Harbin: Harbin Institute of Technology, 2013. | |
72 | 陆见广. 碳纤维智能混凝土梁的力电效应研究[D]. 南京:南京理工大学, 2007. |
LU Jianguang. Study on the electrodynamic effect of carbon fiber intelligent concrete beam[D]. Nanjing: Nanjing University of Science and Technology, 2007. | |
73 | LI C, THOSTENSON E T, CHOU T. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites[J]. Applied Physics Letters, 2007, 91(22): 223114. |
74 | HAN B, SUN S, DING S, et al. Review of nanocarbon-engineered multifunctional cementitious composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 69-81. |
75 | BAO W S, MEGUID S A, ZHU Z H, et al. Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites[J]. Journal of Applied Physics, 2012, 111(9): 093726. |
76 | CHEN Pu-Woei, CHUNG D D L. Concrete reinforced with up to 0.2 vol% of short carbon fibres[J]. Composites, 1993, 24(1): 33-52. |
77 | WEN S, CHUNG D D L. Model of piezoresistivity in carbon fiber cement[J]. Cement and Concrete Research, 2006, 36(10): 1879-1885. |
78 | 王燕锋, 赵晓华, 李庚英. 干湿变化对多壁碳纳米管/水泥砂浆压阻效应的影响[J]. 材料导报, 2017, 31(24): 20-25. |
WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of dry/wet state variation on piezoresistivity of multi-walled carbon nanotube reinforced cement mortar[J]. Materials Review, 2017, 31(24): 20-25. | |
79 | GARCÍA-MACÍAS E, D'ALESSANDRO A, CASTRO-TRIGUERO R, et al. Micromechanics modeling of the uniaxial strain-sensing property of carbon nanotube cement-matrix composites for SHM applications[J]. Composite Structures, 2017, 163: 195-215. |
80 | GARCÍA-MACÍAS E, D'ALESSANDRO A, CASTRO-TRIGUERO R, et al. Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites[J]. Composites Part B: Engineering, 2017, 108: 451-469. |
81 | 李建波, 林皋, 陈健云. 随机凹凸型骨料在混凝土细观数值模型中配置算法研究[J]. 大连理工大学学报, 2008(6): 869-874. |
LI Jianbo, LIN Gao, CHEN Jianyun. Numerical generation and efficient distribution for random shape aggregates in mesoscopic concrete model[J]. Journal of Dalian University of Technology, 2008(6): 869-874. | |
82 | WITTMANN F H, ROELFSTRA P E, SADOUKI H. Simulation and analysis of composite structures[J]. Materials Science and Engineering, 1985, 68(2): 239-248. |
83 | SANATI M, SANDWELL A, MOSTAGHIMI H, et al. Development of nanocomposite-based strain sensor with piezoelectric and piezoresistive properties[J]. Sensors, 2018, 18(11): 3789. |
84 | ALIAN A R, MEGUID S A. Multiscale modeling of the coupled electromechanical behavior of multifunctional nanocomposites[J]. Composite Structures, 2019, 208: 826-835. |
85 | BERHAN L, SASTRY A M. Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2007, 75(4): 041120. |
86 | WANG Z, YE X. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites: mechanism and optimizing principle[J]. Nanotechnology, 2013, 24(26): 265704. |
87 | LUHENG W, TIANHUAI D, PENG W. Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite[J]. Carbon, 2009, 47(14): 3151-3157. |
88 | THEODOSIOU T C, SARAVANOS D A. Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models[J]. Composites Science and Technology, 2010, 70(9): 1312-1320. |
[1] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[2] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[3] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[4] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[6] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[7] | CHEN Shaoyun, ZHOU Xiantai, JI Hongbing. Preparation of metalloporphyrin/carbon nanotube biomimetic catalysts and its catalytic mechanism in baeyer-villiger oxidation [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1332-1340. |
[8] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[9] | ZHANG Xinhai, ZHAO Sichen, ZHU Hui, ZHANG Shoushi, WANG Kai. Comparative study on desulfurization performance of various carbon materials combined with sodium carbonate [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 424-435. |
[10] | ZHANG Aijing, JIANG Shengjuan, ZHOU Mingzheng, CHAI Maorong, ZHANG Jin. Effect of wall number on the electro-catalytic activity of nitrogen-doped carbon nanotubes for oxygen reduction reaction [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2038-2045. |
[11] | ZHOU Taotao, XIONG Zhibo, WU Zhigen, LI Shang. Characters of electric resistance and heating of expanded graphite/paraffin composite phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 892-900. |
[12] | MU Shiyun, LIU Kai, LYU Xiaoqi, JIAO Yilai, LI Xingang, LI Hong, FAN Xiaolei, GAO Xin. Conversion of fructose to 5-hydroxymethylfurfural catalyzed by microwave-assisted zirconia@carbon nanotubes [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5858-5869. |
[13] | WANG Ying, RAN Jinye, ZHANG Jin, YANG Xin, ZHANG Hao. Prediction of heavy haze pollution episodes based on deep feature fusion of pollutant and meteorological time series in Xi’an during 2015—2020 heating season [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5685-5694. |
[14] | LANG Xuemei, FAN Shuanshi, WANG Yanhong, LI Gang, YU Chi, WANG Shenglong. Opportunities for energy and chemical engineering through clathrate hydrates [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4703-4710. |
[15] | XU Zhong, HOU Jing, WU Enhui, LI Jun, HUANG Ping, TANG Yalan. Effect of graphite on latent heat and conductivity of activated carbon/fatty acid composite phase change materials [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3878-3891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |