Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5685-5694.DOI: 10.16085/j.issn.1000-6613.2021-2658
• Resources and environmental engineering • Previous Articles
WANG Ying1(), RAN Jinye2, ZHANG Jin1, YANG Xin3(), ZHANG Hao1()
Received:
2021-12-30
Revised:
2022-05-13
Online:
2022-10-21
Published:
2022-10-20
Contact:
YANG Xin, ZHANG Hao
王英1(), 冉进业2, 张今1, 杨鑫3(), 张浩1()
通讯作者:
杨鑫,张浩
作者简介:
王英(1997—),女,硕士研究生,研究方向为环境化学大数据。E-mail:18375964485@163.com。
基金资助:
CLC Number:
WANG Ying, RAN Jinye, ZHANG Jin, YANG Xin, ZHANG Hao. Prediction of heavy haze pollution episodes based on deep feature fusion of pollutant and meteorological time series in Xi’an during 2015—2020 heating season[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5685-5694.
王英, 冉进业, 张今, 杨鑫, 张浩. 基于深度时间序列特征融合的西安市2015—2020年供暖季雾霾重污染过程预警[J]. 化工进展, 2022, 41(10): 5685-5694.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2658
变量 | +3h | +6h | +12h | +24h | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P-value | r | P-value | r | P-value | r | P-value | r | ||||
PM2.5 | 0 | 0.98 | 0 | 0.93 | 0 | 0.84 | 4.98E-95 | 0.67 | |||
PM10 | 2.76×10-7 | 0.87 | 3.6×10-8 | 0.82 | — | — | 2.26×10-44 | 0.63 | |||
CO | — | — | — | — | — | — | — | — | |||
NO2 | 3.6×10-17 | 0.80 | 3.93×10-57 | 0.78 | 3.75×10-14 | 0.67 | 3.54×10-37 | 0.58 | |||
SO2 | — | — | — | — | 4.24×10-8 | 0.45 | 9.10×10-18 | 0.38 | |||
O3 | — | — | — | — | — | — | — | — | |||
pO | 2.71×10-10 | 0.32 | 8.93×10-13 | 0.33 | — | — | — | — | |||
p | — | — | — | — | 8.93×10-12 | 0.32 | 3.9×10-31 | 0.29 | |||
RH | 3.69×10-8 | 0.56 | — | — | — | — | 1.00×10-5 | 0.44 | |||
WD | 7.61×10-8 | 0.38 | 2.43×10-49 | 0.35 | 1.02×10-67 | 0.33 | 3.45×10-12 | 0.30 | |||
WS | 0.0271 | 0.48 | — | — | — | — | 7.79×10-74 | 0.31 | |||
Td | — | — | — | — | — | — | — | — | |||
Temp | 0.0139 | 0.28 | 1.96×10-26 | 0.34 | 4.62×10-90 | 0.32 | 1.50×10-5 | 0.43 | |||
VV | 2.04×10-10 | 0.69 | 1.73×10-31 | 0.33 | 1.38×10-39 | 0.33 | 3.86×10-46 | 0.24 |
变量 | +3h | +6h | +12h | +24h | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P-value | r | P-value | r | P-value | r | P-value | r | ||||
PM2.5 | 0 | 0.98 | 0 | 0.93 | 0 | 0.84 | 4.98E-95 | 0.67 | |||
PM10 | 2.76×10-7 | 0.87 | 3.6×10-8 | 0.82 | — | — | 2.26×10-44 | 0.63 | |||
CO | — | — | — | — | — | — | — | — | |||
NO2 | 3.6×10-17 | 0.80 | 3.93×10-57 | 0.78 | 3.75×10-14 | 0.67 | 3.54×10-37 | 0.58 | |||
SO2 | — | — | — | — | 4.24×10-8 | 0.45 | 9.10×10-18 | 0.38 | |||
O3 | — | — | — | — | — | — | — | — | |||
pO | 2.71×10-10 | 0.32 | 8.93×10-13 | 0.33 | — | — | — | — | |||
p | — | — | — | — | 8.93×10-12 | 0.32 | 3.9×10-31 | 0.29 | |||
RH | 3.69×10-8 | 0.56 | — | — | — | — | 1.00×10-5 | 0.44 | |||
WD | 7.61×10-8 | 0.38 | 2.43×10-49 | 0.35 | 1.02×10-67 | 0.33 | 3.45×10-12 | 0.30 | |||
WS | 0.0271 | 0.48 | — | — | — | — | 7.79×10-74 | 0.31 | |||
Td | — | — | — | — | — | — | — | — | |||
Temp | 0.0139 | 0.28 | 1.96×10-26 | 0.34 | 4.62×10-90 | 0.32 | 1.50×10-5 | 0.43 | |||
VV | 2.04×10-10 | 0.69 | 1.73×10-31 | 0.33 | 1.38×10-39 | 0.33 | 3.86×10-46 | 0.24 |
模型 | 训练时间/s | 在线预测速度/ms‧样本-1 |
---|---|---|
RF | 471 | 187.50 |
SVR | 115 | 629.35 |
MLR | 1 | 180.52 |
LSTM_PM2.5 | 593 | 425.19 |
M_LSTM | 800 | 660.56 |
LSTM-RF | 1064 | 639.69 |
LSTM-MLR | 594 | 605.71 |
模型 | 训练时间/s | 在线预测速度/ms‧样本-1 |
---|---|---|
RF | 471 | 187.50 |
SVR | 115 | 629.35 |
MLR | 1 | 180.52 |
LSTM_PM2.5 | 593 | 425.19 |
M_LSTM | 800 | 660.56 |
LSTM-RF | 1064 | 639.69 |
LSTM-MLR | 594 | 605.71 |
模型 | +3h | +6h | |||||||
---|---|---|---|---|---|---|---|---|---|
MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | ||
RF | 19.09 | 14.37 | 19.58 | 0.91 | 32.37 | 20.65 | 28.60 | 0.77 | |
SVR | 38.32 | 19.02 | 24.04 | 0.89 | 37.44 | 22.10 | 28.91 | 0.79 | |
MLR | 21.23 | 13.18 | 17.66 | 0.91 | 32.48 | 19.21 | 26.30 | 0.80 | |
LSTM_PM2.5 | 11.79 | 8.36 | 11.84 | 0.96 | 29.46 | 16.27 | 22.67 | 0.85 | |
M_LSTM | 12.62 | 8.44 | 11.73 | 0.96 | 26.21 | 16.09 | 22.92 | 0.84 | |
LSTM-RF | 13.42 | 8.83 | 12.28 | 0.96 | 26.06 | 16.25 | 23.28 | 0.84 | |
LSTM-MLR | 11.94 | 7.89 | 11.46 | 0.96 | 26.31 | 15.18 | 21.37 | 0.86 | |
模型 | +12h | +24h | |||||||
MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | ||
RF | 53.10 | 29.16 | 38.93 | 0.56 | 72.17 | 36.13 | 48.54 | 0.32 | |
SVR | 48.81 | 28.03 | 36.82 | 0.62 | 67.68 | 33.21 | 44.72 | 0.42 | |
MLR | 48.57 | 27.45 | 36.48 | 0.62 | 67.15 | 32.92 | 44.47 | 0.42 | |
LSTM_PM2.5 | 50.12 | 25.39 | 34.45 | 0.65 | 84.52 | 36.36 | 48.55 | 0.35 | |
M_LSTM | 41.30 | 24.01 | 33.85 | 0.66 | 65.55 | 32.96 | 45.56 | 0.40 | |
LSTM-RF | 44.69 | 24.07 | 32..80 | 0.69 | 69.53 | 34.15 | 45.15 | 0.39 | |
LSTM-MLR | 46.03 | 23.07 | 32.59 | 0.70 | 71.80 | 33.56 | 45.20 | 0.42 |
模型 | +3h | +6h | |||||||
---|---|---|---|---|---|---|---|---|---|
MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | ||
RF | 19.09 | 14.37 | 19.58 | 0.91 | 32.37 | 20.65 | 28.60 | 0.77 | |
SVR | 38.32 | 19.02 | 24.04 | 0.89 | 37.44 | 22.10 | 28.91 | 0.79 | |
MLR | 21.23 | 13.18 | 17.66 | 0.91 | 32.48 | 19.21 | 26.30 | 0.80 | |
LSTM_PM2.5 | 11.79 | 8.36 | 11.84 | 0.96 | 29.46 | 16.27 | 22.67 | 0.85 | |
M_LSTM | 12.62 | 8.44 | 11.73 | 0.96 | 26.21 | 16.09 | 22.92 | 0.84 | |
LSTM-RF | 13.42 | 8.83 | 12.28 | 0.96 | 26.06 | 16.25 | 23.28 | 0.84 | |
LSTM-MLR | 11.94 | 7.89 | 11.46 | 0.96 | 26.31 | 15.18 | 21.37 | 0.86 | |
模型 | +12h | +24h | |||||||
MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | ||
RF | 53.10 | 29.16 | 38.93 | 0.56 | 72.17 | 36.13 | 48.54 | 0.32 | |
SVR | 48.81 | 28.03 | 36.82 | 0.62 | 67.68 | 33.21 | 44.72 | 0.42 | |
MLR | 48.57 | 27.45 | 36.48 | 0.62 | 67.15 | 32.92 | 44.47 | 0.42 | |
LSTM_PM2.5 | 50.12 | 25.39 | 34.45 | 0.65 | 84.52 | 36.36 | 48.55 | 0.35 | |
M_LSTM | 41.30 | 24.01 | 33.85 | 0.66 | 65.55 | 32.96 | 45.56 | 0.40 | |
LSTM-RF | 44.69 | 24.07 | 32..80 | 0.69 | 69.53 | 34.15 | 45.15 | 0.39 | |
LSTM-MLR | 46.03 | 23.07 | 32.59 | 0.70 | 71.80 | 33.56 | 45.20 | 0.42 |
模型 | MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | FAR/% | TPR/% | SI/% | |
---|---|---|---|---|---|---|---|---|
+3h | RF | 13.40 | 26.33 | 31.75 | 0.71 | 1.04 | 69.49 | 68.45 |
SVR | 10.88 | 21.50 | 27.71 | 0.68 | 1.44 | 78.13 | 76.69 | |
MLR | 9.69 | 19.17 | 24.11 | 0.73 | 1.47 | 83.09 | 81.62 | |
LSTM_PM2.5 | 6.88 | 13.53 | 16.79 | 0.86 | 1.11 | 88.60 | 87.49 | |
M_LSTM | 6.11 | 12.08 | 16.10 | 0.82 | 1.94 | 95.04 | 93.10 | |
LSTM-RF | 6.72 | 13.21 | 16.10 | 0.85 | 1.98 | 89.52 | 87.54 | |
LSTM-MLR | 5.49 | 10.66 | 14.18 | 0.86 | 2.12 | 94.12 | 92.00 | |
+6h | RF | 20.25 | 39.95 | 48.66 | 0.41 | 1.49 | 50.00 | 48.51 |
SVR | 16.42 | 32.26 | 39.95 | 0.52 | 1.62 | 63.05 | 61.43 | |
MLR | 14.94 | 29.48 | 35.81 | 0.55 | 2.06 | 68.57 | 66.51 | |
LSTM_PM2.5 | 12.76 | 25.39 | 30.67 | 0.61 | 2.05 | 75.74 | 73.69 | |
M_LSTM | 12.61 | 24.73 | 31.03 | 0.59 | 2.08 | 79.60 | 77.52 | |
LSTM-RF | 14.26 | 29.10 | 37.55 | 0.48 | 2.18 | 72.61 | 70.43 | |
LSTM-MLR | 10.71 | 21.30 | 26.85 | 0.62 | 2.71 | 85.29 | 82.58 | |
+12h | RF | 28.79 | 56.26 | 63.36 | 0.34 | 1.66 | 30.51 | 28.85 |
SVR | 24.07 | 47.35 | 53.72 | 0.40 | 2.22 | 45.77 | 43.55 | |
MLR | 24.68 | 48.76 | 55.17 | 0.40 | 2.15 | 43.38 | 41.23 | |
LSTM_PM2.5 | 20.48 | 40.62 | 46.84 | 0.44 | 2.75 | 55.33 | 52.58 | |
M_LSTM | 21.83 | 42.54 | 51.37 | 0.34 | 2.95 | 54.96 | 52.01 | |
LSTM-RF | 22.34 | 44.86 | 51.98 | 0.41 | 2.35 | 41.54 | 39.19 | |
LSTM-MLR | 14.15 | 28.05 | 34.09 | 0.47 | 5.46 | 77.57 | 72.11 | |
+24h | RF | 34.19 | 66.43 | 72.95 | 0.28 | 4.95 | 31.62 | 26.67 |
SVR | 27.42 | 54.23 | 60.62 | 0.26 | 5.02 | 39.71 | 34.69 | |
MLR | 27.77 | 54.98 | 61.27 | 0.27 | 4.99 | 38.60 | 33.61 | |
LSTM_PM2.5 | 25.35 | 49.92 | 56.17 | 0.31 | 6.65 | 49.63 | 42.98 | |
M_LSTM | 29.55 | 57.77 | 64.64 | 0.20 | 5.32 | 38.79 | 33.47 | |
LSTM-RF | 31.88 | 62.85 | 68.98 | 0.35 | 3.72 | 27.57 | 23.85 | |
LSTM-MLR | 24.06 | 48.01 | 54.88 | 0.28 | 6.81 | 51.10 | 44.29 |
模型 | MAPE/% | MAE/μg‧m-3 | RMSE/μg‧m-3 | R2 | FAR/% | TPR/% | SI/% | |
---|---|---|---|---|---|---|---|---|
+3h | RF | 13.40 | 26.33 | 31.75 | 0.71 | 1.04 | 69.49 | 68.45 |
SVR | 10.88 | 21.50 | 27.71 | 0.68 | 1.44 | 78.13 | 76.69 | |
MLR | 9.69 | 19.17 | 24.11 | 0.73 | 1.47 | 83.09 | 81.62 | |
LSTM_PM2.5 | 6.88 | 13.53 | 16.79 | 0.86 | 1.11 | 88.60 | 87.49 | |
M_LSTM | 6.11 | 12.08 | 16.10 | 0.82 | 1.94 | 95.04 | 93.10 | |
LSTM-RF | 6.72 | 13.21 | 16.10 | 0.85 | 1.98 | 89.52 | 87.54 | |
LSTM-MLR | 5.49 | 10.66 | 14.18 | 0.86 | 2.12 | 94.12 | 92.00 | |
+6h | RF | 20.25 | 39.95 | 48.66 | 0.41 | 1.49 | 50.00 | 48.51 |
SVR | 16.42 | 32.26 | 39.95 | 0.52 | 1.62 | 63.05 | 61.43 | |
MLR | 14.94 | 29.48 | 35.81 | 0.55 | 2.06 | 68.57 | 66.51 | |
LSTM_PM2.5 | 12.76 | 25.39 | 30.67 | 0.61 | 2.05 | 75.74 | 73.69 | |
M_LSTM | 12.61 | 24.73 | 31.03 | 0.59 | 2.08 | 79.60 | 77.52 | |
LSTM-RF | 14.26 | 29.10 | 37.55 | 0.48 | 2.18 | 72.61 | 70.43 | |
LSTM-MLR | 10.71 | 21.30 | 26.85 | 0.62 | 2.71 | 85.29 | 82.58 | |
+12h | RF | 28.79 | 56.26 | 63.36 | 0.34 | 1.66 | 30.51 | 28.85 |
SVR | 24.07 | 47.35 | 53.72 | 0.40 | 2.22 | 45.77 | 43.55 | |
MLR | 24.68 | 48.76 | 55.17 | 0.40 | 2.15 | 43.38 | 41.23 | |
LSTM_PM2.5 | 20.48 | 40.62 | 46.84 | 0.44 | 2.75 | 55.33 | 52.58 | |
M_LSTM | 21.83 | 42.54 | 51.37 | 0.34 | 2.95 | 54.96 | 52.01 | |
LSTM-RF | 22.34 | 44.86 | 51.98 | 0.41 | 2.35 | 41.54 | 39.19 | |
LSTM-MLR | 14.15 | 28.05 | 34.09 | 0.47 | 5.46 | 77.57 | 72.11 | |
+24h | RF | 34.19 | 66.43 | 72.95 | 0.28 | 4.95 | 31.62 | 26.67 |
SVR | 27.42 | 54.23 | 60.62 | 0.26 | 5.02 | 39.71 | 34.69 | |
MLR | 27.77 | 54.98 | 61.27 | 0.27 | 4.99 | 38.60 | 33.61 | |
LSTM_PM2.5 | 25.35 | 49.92 | 56.17 | 0.31 | 6.65 | 49.63 | 42.98 | |
M_LSTM | 29.55 | 57.77 | 64.64 | 0.20 | 5.32 | 38.79 | 33.47 | |
LSTM-RF | 31.88 | 62.85 | 68.98 | 0.35 | 3.72 | 27.57 | 23.85 | |
LSTM-MLR | 24.06 | 48.01 | 54.88 | 0.28 | 6.81 | 51.10 | 44.29 |
模型 | +3h | +6h | +12h | +24h | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | ||||
MAPE/% | 6.89 | 6.35 | 5.49 | 12.53 | 12.12 | 10.71 | 17.64 | 16.58 | 14.15 | 24.80 | 23.15 | 24.06 | |||
MAE/μg‧m-3 | 14.84 | 12.83 | 10.66 | 27.23 | 24.90 | 21.30 | 39.00 | 34.60 | 28.05 | 57.75 | 49.34 | 48.01 | |||
RMS/μg‧m-3 | 20.93 | 17.38 | 14.18 | 36.91 | 33.16 | 26.85 | 50.23 | 45.76 | 34.09 | 73.68 | 60.97 | 54.88 | |||
TPR/% | 92.04 | 91.02 | 94.12 | 83.89 | 80.81 | 85.29 | 75.03 | 73.06 | 77.57 | 59.60 | 58.98 | 51.10 | |||
FAR/% | 2.83 | 2.21 | 2.12 | 4.42 | 3.79 | 2.71 | 6.20 | 7.13 | 5.46 | 7.25 | 9.93 | 6.81 | |||
SI/% | 89.21 | 88.81 | 91.92 | 79.47 | 77.02 | 82.58 | 68.83 | 65.93 | 72.11 | 52.35 | 49.05 | 44.29 |
模型 | +3h | +6h | +12h | +24h | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | 训练集 | 验证集 | 测试集 | ||||
MAPE/% | 6.89 | 6.35 | 5.49 | 12.53 | 12.12 | 10.71 | 17.64 | 16.58 | 14.15 | 24.80 | 23.15 | 24.06 | |||
MAE/μg‧m-3 | 14.84 | 12.83 | 10.66 | 27.23 | 24.90 | 21.30 | 39.00 | 34.60 | 28.05 | 57.75 | 49.34 | 48.01 | |||
RMS/μg‧m-3 | 20.93 | 17.38 | 14.18 | 36.91 | 33.16 | 26.85 | 50.23 | 45.76 | 34.09 | 73.68 | 60.97 | 54.88 | |||
TPR/% | 92.04 | 91.02 | 94.12 | 83.89 | 80.81 | 85.29 | 75.03 | 73.06 | 77.57 | 59.60 | 58.98 | 51.10 | |||
FAR/% | 2.83 | 2.21 | 2.12 | 4.42 | 3.79 | 2.71 | 6.20 | 7.13 | 5.46 | 7.25 | 9.93 | 6.81 | |||
SI/% | 89.21 | 88.81 | 91.92 | 79.47 | 77.02 | 82.58 | 68.83 | 65.93 | 72.11 | 52.35 | 49.05 | 44.29 |
变量 | +3h | +6h | +12h | +24h | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
权值 | 比率/% | 权值 | 比率/% | 权值 | 比率/% | 权值 | 比率/% | ||||
PM2.5 | 0.9744 | 80.89 | 0.9188 | 57.55 | 0.9786 | 45.22 | 0.4882 | 16.34 | |||
PM10 | 0.0238 | 1.98 | 0.0484 | 3.03 | — | — | 0.3329 | 11.14 | |||
CO | — | — | — | — | — | — | — | — | |||
NO2 | 0.0392 | 3.25 | 0.1372 | 8.60 | 0.1061 | 4.90 | 0.3348 | 11.21 | |||
SO2 | — | — | — | — | -0.0831 | 3.84 | -0.2117 | 7.08 | |||
O3 | — | — | — | — | — | — | — | — | |||
pO | 0.0427 | 3.54 | 0.0758 | 4.75 | — | — | — | — | |||
p | — | — | — | — | 0.1314 | 6.07 | 0.3200 | 10.71 | |||
RH | 0.0205 | 1.70 | — | — | — | — | 0.0901 | 3.01 | |||
WD | 0.0474 | 3.93 | 0.1427 | 8.94 | 0.2678 | 12.38 | 0.1898 | 6.35 | |||
WS | 0.0126 | 1.05 | — | — | — | — | 0.4005 | 13.40 | |||
Td | — | — | — | — | — | — | — | — | |||
Temp | 0.0230 | 1.91 | 0.1252 | 7.85 | 0.3496 | 16.16 | 0.1069 | 3.58 | |||
VV | 0.0210 | 1.74 | 0.1484 | 9.29 | 0.2473 | 11.43 | 0.5133 | 17.18 |
变量 | +3h | +6h | +12h | +24h | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
权值 | 比率/% | 权值 | 比率/% | 权值 | 比率/% | 权值 | 比率/% | ||||
PM2.5 | 0.9744 | 80.89 | 0.9188 | 57.55 | 0.9786 | 45.22 | 0.4882 | 16.34 | |||
PM10 | 0.0238 | 1.98 | 0.0484 | 3.03 | — | — | 0.3329 | 11.14 | |||
CO | — | — | — | — | — | — | — | — | |||
NO2 | 0.0392 | 3.25 | 0.1372 | 8.60 | 0.1061 | 4.90 | 0.3348 | 11.21 | |||
SO2 | — | — | — | — | -0.0831 | 3.84 | -0.2117 | 7.08 | |||
O3 | — | — | — | — | — | — | — | — | |||
pO | 0.0427 | 3.54 | 0.0758 | 4.75 | — | — | — | — | |||
p | — | — | — | — | 0.1314 | 6.07 | 0.3200 | 10.71 | |||
RH | 0.0205 | 1.70 | — | — | — | — | 0.0901 | 3.01 | |||
WD | 0.0474 | 3.93 | 0.1427 | 8.94 | 0.2678 | 12.38 | 0.1898 | 6.35 | |||
WS | 0.0126 | 1.05 | — | — | — | — | 0.4005 | 13.40 | |||
Td | — | — | — | — | — | — | — | — | |||
Temp | 0.0230 | 1.91 | 0.1252 | 7.85 | 0.3496 | 16.16 | 0.1069 | 3.58 | |||
VV | 0.0210 | 1.74 | 0.1484 | 9.29 | 0.2473 | 11.43 | 0.5133 | 17.18 |
1 | LE Tianhao, WANG Yuan, LIU Lang, et al. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China[J]. Science, 2020, 369(6504): 702-706. |
2 | ZHAO Shuyun, ZHANG Hua, XIE Bing. The effects of El Niño-Southern Oscillation on the winter haze pollution of China[J]. Atmospheric Chemistry and Physics, 2018, 18(3): 1863-1877. |
3 | ZHANG Qiang, ZHENG Yixuan, TONG Dan, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017[J]. PNAS, 2019, 116(49): 24463-24469. |
4 | XU Peng, CHEN Yongfen, YE Xiaojian. Haze, air pollution, and health in China[J]. The Lancet, 2013, 382(9910): 2067. |
5 | 朱彤, 尚静, 赵德峰. 大气复合污染及灰霾形成中非均相化学过程的作用[J]. 中国科学: 化学, 2010, 40(12): 1731-1740. |
ZHU Tong, SHANG Jing, ZHAO Defeng. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze[J]. Scientia Sinica Chimica, 2010, 40(12): 1731-1740. | |
6 | PETÄJÄ T, JÄRVI L, KERMINEN V M, et al. Enhanced air pollution via aerosol-boundary layer feedback in China[J]. Scientific Reports, 2016, 6: 18998. |
7 | 熊远南. 基于改进灰色-多元回归组合预测模型的燃煤电厂智慧水务研究[J]. 化工进展, 2020, 39(S2): 393-400. |
XIONG Yuannan. Smart water affair of coal-fired power plant based on improved combination prediction model of grey system and regression analysis[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 393-400. | |
8 | GARIAZZO C, CARLINO G, SILIBELLO C, et al. A multi-city air pollution population exposure study: combined use of chemical-transport and random-Forest models with dynamic population data[J]. The Science of the Total Environment, 2020, 724: 138102. |
9 | 靳文博, 敬加强, 田震, 等. 基于最小二乘支持向量机的蜡沉积速率预测[J]. 化工进展, 2014, 33(10): 2565-2569. |
JIN Wenbo, JING Jiaqiang, TIAN Zhen, et al. Prediction of wax deposition rate based on least squares support vector machine[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2565-2569. | |
10 | 张浩, 于君毅, 刘晓慧, 等. 基于广义隐马尔可夫模型的PM2.5浓度预测[J]. 化工学报, 2018, 69(3): 1215-1220. |
ZHANG Hao, YU Junyi, LIU Xiaohui, et al. Prediction of fine particulate matter concentrations based on generalized hidden Markov model[J]. CIESC Journal, 2018, 69(3): 1215-1220. | |
11 | SUN Wei, ZHANG Hao, PALAZOGLU A, et al. Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California[J]. Science of the Total Environment, 2013, 443: 93-103. |
12 | 姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764. |
YAO Yuman, LUO Wenjia, DAI Yiyang. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764. | |
13 | 宋泓阳, 孙晓岩, 项曙光. 人工神经网络在化工过程中的应用进展[J]. 化工进展, 2016, 35(12): 3755-3762. |
SONG Hongyang, SUN Xiaoyan, XIANG Shuguang. Progress on the application of artificial neural network in chemical industry[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3755-3762. | |
14 | GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. IEEE, 2015: 1440-1448. |
15 | HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. IEEE, 2017: 2980-2988. |
16 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359. |
17 | SENIOR A W, EVANS R, JUMPER J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020, 577(7792): 706-710. |
18 | JUMPER J, EVANS R, PRITZEL A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
19 | ZHAO Jiachen, DENG Fang, CAI Yeyuan, et al. Long short-term memory-fully connected (LSTM-FC) neural network for PM2.5 concentration prediction[J]. Chemosphere, 2019, 220: 486-492. |
20 | 马双忱, 林宸雨, 周权, 等. 基于深度神经网络的脱硫系统预测模型及应用[J]. 化工进展, 2021, 40(3): 1689-1698. |
MA Shuangchen, LIN Chenyu, ZHOU Quan, et al. Prediction model of FGD system based on deep neural network and its application[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698. | |
21 | 方黄峰, 刘瑶瑶, 张文彪. 基于LSTM神经网络的流化床干燥器内生物质颗粒湿度预测[J]. 化工学报, 2020, 71(S1): 307-314. |
FANG Huangfeng, LIU Yaoyao, ZHANG Wenbiao. Biomass moisture content prediction in fluidized bed dryer based on LSTM neural network[J]. CIESC Journal, 2020, 71(S1): 307-314. | |
22 | GHORBANI A, OUYANG D, ABID A, et al. Deep learning interpretation of echocardiograms[J]. NPJ Digital Medicine, 2020, 3: 10. |
23 | DU Mengnan, LIU Ninghao, HU Xia. Techniques for interpretable machine learning[J]. Communications of the ACM, 2019, 63(1): 68-77. |
24 | GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222-2232. |
25 | SUN Wei, ZHANG Hao, PALAZOGLU A. Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models[J]. Atmospheric Environment, 2013, 81: 199-208. |
26 | 徐丹妮, 王瑾婷, 袁自冰, 等. 汾渭平原复杂地形影响下冬季PM2.5污染分布特征、来源及成因分析[J]. 环境科学学报, 2021, 41(4): 1184-1198. |
XU Danni, WANG Jinting, YUAN Zibing, et al. Temporal-spatial variations, source apportionment, and formation mechanisms of PM2.5 pollution over Fenwei Plain, China[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1184-1198. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[3] | ZHANG Chao, YANG Peng, LIU Guanglin, ZHAO Wei, YANG Xufei, ZHANG Wei, YU Bo. Influence of surface microstructure on arrayed microjet flow boiling heat transfer [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4193-4203. |
[4] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[5] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[6] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[7] | ZHAO Jingbin, WANG Yanfu, WANG Tao, MA Weikai, WANG Chen. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. |
[8] | ZHANG Jianwei, XU Rui, ZHANG Zhongchuang, DONG Xin, FENG Ying. Mixing characteristics of concentration field in impingement flow reactor based on convolutional neural network [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 658-668. |
[9] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[10] | WANG Lu, ZHANG Lei, DU Jian. High-throughput screening of zeolite materials for CO2/N2 selective adsorption separation by machine learning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. |
[11] | LI Wei, RUAN Chenglong, WANG Xiaoming, LI Yajie, LIANG Chenglong. Integrated modelling method for tank-batch finished gasoline blending formulations [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4701-4712. |
[12] | FENG Ying, ZHAO Mengjie, CUI Qian, XIE Yuju, ZHANG Jianwei, DONG Xin. Research progress of molecular simulation technology in the development and application of chitosan functional materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4241-4253. |
[13] | YANG Lei, SONG Jinling, TANG Chuyang, YU Shiyao, YANG Xinyu. Products prediction of carbon-based solid waste pyrolysis based on FUSION model [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3966-3973. |
[14] | YU Han, WANG Hong, ZHU Xun, DING Yudong, CHEN Rong, LIAO Qiang. Prediction model of electrospray deposition radius [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2864-2870. |
[15] | JIANG Ning, ZHANG Yuanyi, FAN Wei, ZHAO Shichao, XU Xinjie, XU Yingjie. Cleaning decision of heat exchanger network based on intelligent prediction and mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1781-1792. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |