Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 4036-4046.DOI: 10.16085/j.issn.1000-6613.2020-1551
• Resources and environmental engineering • Previous Articles Next Articles
FENG Jiangtao1(), WANG Xi1, ZHAO Xuyang1, GONG Xianghong2, YAN Wei1()
Received:
2020-08-05
Revised:
2020-09-24
Online:
2021-07-19
Published:
2021-07-06
Contact:
YAN Wei
冯江涛1(), 王睎1, 赵旭阳1, 龚向红2, 延卫1()
通讯作者:
延卫
作者简介:
冯江涛(1981—),男,博士,副教授,研究方向为新型吸附材料。E-mail:基金资助:
CLC Number:
FENG Jiangtao, WANG Xi, ZHAO Xuyang, GONG Xianghong, YAN Wei. Removal of fluoride from water by modified polypyrrole[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4036-4046.
冯江涛, 王睎, 赵旭阳, 龚向红, 延卫. 改性聚吡咯材料去除水中氟离子的性能[J]. 化工进展, 2021, 40(7): 4036-4046.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1551
样品名称 | 碳原子 /% | 氮原子 /% | 氧原子 /% | 氯原子 /% |
---|---|---|---|---|
纯PPy | 50.55 | 46.44 | — | 3.01 |
ARG/PPy | 57.50 | 28.40 | 10.79 | 3.31 |
MO/PPy | 50.44 | 31.23 | 14.68 | 3.65 |
α-CD/MO/PPy | 55.33 | 30.56 | 10.16 | 3.95 |
样品名称 | 碳原子 /% | 氮原子 /% | 氧原子 /% | 氯原子 /% |
---|---|---|---|---|
纯PPy | 50.55 | 46.44 | — | 3.01 |
ARG/PPy | 57.50 | 28.40 | 10.79 | 3.31 |
MO/PPy | 50.44 | 31.23 | 14.68 | 3.65 |
α-CD/MO/PPy | 55.33 | 30.56 | 10.16 | 3.95 |
样品名称 | SBET/m2·g-1 | 总孔容V/cm3·g-1 | 平均孔径R/nm |
---|---|---|---|
纯PPy | 6.35 | 0.140 | 9.49 |
ARG/PPy | 45.36 | 0.333 | 11.87 |
MO/PPy | 62.10 | 0.481 | 10.75 |
α-CD/MO/PPy | 65.10 | 0.403 | 12.75 |
样品名称 | SBET/m2·g-1 | 总孔容V/cm3·g-1 | 平均孔径R/nm |
---|---|---|---|
纯PPy | 6.35 | 0.140 | 9.49 |
ARG/PPy | 45.36 | 0.333 | 11.87 |
MO/PPy | 62.10 | 0.481 | 10.75 |
α-CD/MO/PPy | 65.10 | 0.403 | 12.75 |
样品 | C0 | qe,e | 准一级动力学 模型参数 | 准二级动力学 模型参数 | |||||
---|---|---|---|---|---|---|---|---|---|
k1 | qe,c | R2 | qe,c | k2 | R2 | ||||
纯PPy | 3 | 1.125 | 0.121 | 1.126 | 0.9964 | 1.126 | 0.063 | 0.9993 | |
5 | 2.107 | 0.153 | 2.109 | 0.9946 | 2.109 | 0.056 | 0.9971 | ||
10 | 3.852 | 0.113 | 3.865 | 0.9909 | 3.865 | 0.037 | 0.9978 | ||
ARG/PPy | 3 | 1.205 | 0.769 | 1.205 | 0.9846 | 1.205 | 0.702 | 0.9999 | |
5 | 2.128 | 0.526 | 2.129 | 0.9994 | 2.129 | 0.646 | 0.9998 | ||
10 | 4.089 | 0.514 | 4.092 | 0.9792 | 4.092 | 0.578 | 0.9996 | ||
MO/PPy | 3 | 1.227 | 0.727 | 1.223 | 0.9918 | 1.223 | 0.891 | 0.9980 | |
5 | 2.205 | 0.726 | 2.206 | 0.9927 | 2.206 | 0.797 | 0.9991 | ||
10 | 4.124 | 0.710 | 4.854 | 0.9941 | 4.854 | 0.675 | 0.9999 | ||
α-CD/MO/PPy | 3 | 1.275 | 0.753 | 1.275 | 0.9922 | 1.275 | 0.941 | 0.9999 | |
5 | 2.268 | 0.704 | 2.258 | 0.9940 | 2.258 | 0.890 | 0.9984 | ||
10 | 4.357 | 0.675 | 4.354 | 0.9948 | 4.354 | 0.722 | 0.9993 |
样品 | C0 | qe,e | 准一级动力学 模型参数 | 准二级动力学 模型参数 | |||||
---|---|---|---|---|---|---|---|---|---|
k1 | qe,c | R2 | qe,c | k2 | R2 | ||||
纯PPy | 3 | 1.125 | 0.121 | 1.126 | 0.9964 | 1.126 | 0.063 | 0.9993 | |
5 | 2.107 | 0.153 | 2.109 | 0.9946 | 2.109 | 0.056 | 0.9971 | ||
10 | 3.852 | 0.113 | 3.865 | 0.9909 | 3.865 | 0.037 | 0.9978 | ||
ARG/PPy | 3 | 1.205 | 0.769 | 1.205 | 0.9846 | 1.205 | 0.702 | 0.9999 | |
5 | 2.128 | 0.526 | 2.129 | 0.9994 | 2.129 | 0.646 | 0.9998 | ||
10 | 4.089 | 0.514 | 4.092 | 0.9792 | 4.092 | 0.578 | 0.9996 | ||
MO/PPy | 3 | 1.227 | 0.727 | 1.223 | 0.9918 | 1.223 | 0.891 | 0.9980 | |
5 | 2.205 | 0.726 | 2.206 | 0.9927 | 2.206 | 0.797 | 0.9991 | ||
10 | 4.124 | 0.710 | 4.854 | 0.9941 | 4.854 | 0.675 | 0.9999 | ||
α-CD/MO/PPy | 3 | 1.275 | 0.753 | 1.275 | 0.9922 | 1.275 | 0.941 | 0.9999 | |
5 | 2.268 | 0.704 | 2.258 | 0.9940 | 2.258 | 0.890 | 0.9984 | ||
10 | 4.357 | 0.675 | 4.354 | 0.9948 | 4.354 | 0.722 | 0.9993 |
吸附剂 | T/K | Langmuir模型 | Freundlich模型 | |||||
---|---|---|---|---|---|---|---|---|
Qm,c | KL | R2 | KF | 1/n | R2 | |||
纯PPy | 288 | 5.282 | 0.041 | 0.9918 | 2.086 | 0.350 | 0.8131 | |
298 | 6.554 | 0.168 | 0.9946 | 2.575 | 0.330 | 0.8920 | ||
308 | 11.536 | 0.200 | 0.9818 | 2.677 | 0.524 | 0.9648 | ||
ARG/PPy | 288 | 6.010 | 0.044 | 0.9904 | 2.418 | 0.346 | 0.8167 | |
298 | 10.906 | 0.150 | 0.9883 | 2.931 | 0.373 | 0.9560 | ||
308 | 13.983 | 0.221 | 0.9874 | 2.941 | 0.540 | 0.9298 | ||
MO/PPy | 288 | 6.359 | 0.090 | 0.9915 | 2.523 | 0.348 | 0.8330 | |
298 | 10.940 | 0.198 | 0.9854 | 3.172 | 0.353 | 0.9587 | ||
308 | 14.443 | 0.233 | 0.9814 | 3.241 | 0.540 | 0.9263 | ||
α-CD/MO/PPy | 288 | 6.361 | 0.122 | 0.9922 | 2.823 | 0.308 | 0.8045 | |
298 | 11.594 | 0.175 | 0.9871 | 3.432 | 0.328 | 0.9660 | ||
308 | 14.713 | 0.295 | 0.9922 | 3.497 | 0.530 | 0.9418 |
吸附剂 | T/K | Langmuir模型 | Freundlich模型 | |||||
---|---|---|---|---|---|---|---|---|
Qm,c | KL | R2 | KF | 1/n | R2 | |||
纯PPy | 288 | 5.282 | 0.041 | 0.9918 | 2.086 | 0.350 | 0.8131 | |
298 | 6.554 | 0.168 | 0.9946 | 2.575 | 0.330 | 0.8920 | ||
308 | 11.536 | 0.200 | 0.9818 | 2.677 | 0.524 | 0.9648 | ||
ARG/PPy | 288 | 6.010 | 0.044 | 0.9904 | 2.418 | 0.346 | 0.8167 | |
298 | 10.906 | 0.150 | 0.9883 | 2.931 | 0.373 | 0.9560 | ||
308 | 13.983 | 0.221 | 0.9874 | 2.941 | 0.540 | 0.9298 | ||
MO/PPy | 288 | 6.359 | 0.090 | 0.9915 | 2.523 | 0.348 | 0.8330 | |
298 | 10.940 | 0.198 | 0.9854 | 3.172 | 0.353 | 0.9587 | ||
308 | 14.443 | 0.233 | 0.9814 | 3.241 | 0.540 | 0.9263 | ||
α-CD/MO/PPy | 288 | 6.361 | 0.122 | 0.9922 | 2.823 | 0.308 | 0.8045 | |
298 | 11.594 | 0.175 | 0.9871 | 3.432 | 0.328 | 0.9660 | ||
308 | 14.713 | 0.295 | 0.9922 | 3.497 | 0.530 | 0.9418 |
吸附剂 | 吸附容量/mg·g-1 | 吸附平衡 时间/min | 参考文献 |
---|---|---|---|
聚苯胺(翠绿亚胺碱) | 1.82 | 5 | [ |
氯掺杂聚吡咯 | 6.37 | 10 | [ |
聚吡咯接枝花生壳生物炭 | 17.15 | 360 | [ |
PPy/Fe3O4 | 17.6~22.3 | 20 | [ |
聚吡咯包覆水合氧化锡 | 26.16~28.99 | 30 | [ |
PPy/TiO2 | 33.18 | 30 | [ |
聚吡咯接枝柚皮生物炭 | 18.52 | 360 | [ |
镧改性介孔氧化铝 | 26.45 | 360 | [ |
β-环糊精改性掺铈水合氧化铁 | 53.30 | 120 | [ |
ARG/PPy | 10.906 | 10 | 本研究 |
MO/PPy | 10.940 | 10 | 本研究 |
α-CD/MO/PPy | 11.594 | 10 | 本研究 |
吸附剂 | 吸附容量/mg·g-1 | 吸附平衡 时间/min | 参考文献 |
---|---|---|---|
聚苯胺(翠绿亚胺碱) | 1.82 | 5 | [ |
氯掺杂聚吡咯 | 6.37 | 10 | [ |
聚吡咯接枝花生壳生物炭 | 17.15 | 360 | [ |
PPy/Fe3O4 | 17.6~22.3 | 20 | [ |
聚吡咯包覆水合氧化锡 | 26.16~28.99 | 30 | [ |
PPy/TiO2 | 33.18 | 30 | [ |
聚吡咯接枝柚皮生物炭 | 18.52 | 360 | [ |
镧改性介孔氧化铝 | 26.45 | 360 | [ |
β-环糊精改性掺铈水合氧化铁 | 53.30 | 120 | [ |
ARG/PPy | 10.906 | 10 | 本研究 |
MO/PPy | 10.940 | 10 | 本研究 |
α-CD/MO/PPy | 11.594 | 10 | 本研究 |
吸附剂 | ?G/kJ·mol-1 | ?H/kJ·mol-1 | ?S/kJ·mol-1·K-1 | ||
---|---|---|---|---|---|
288K | 298K | 308K | |||
纯PPy | -14.38 | -14.96 | -16.57 | 8.561 | 0.087 |
ARG/PPy | -14.82 | -15.97 | -17.39 | 14.732 | 0.110 |
MO/PPy | -15.02 | -16.06 | -17.69 | 6.683 | 0.084 |
α-CD/MO/PPy | -15.19 | -16.36 | -18.13 | 11.902 | 0.105 |
吸附剂 | ?G/kJ·mol-1 | ?H/kJ·mol-1 | ?S/kJ·mol-1·K-1 | ||
---|---|---|---|---|---|
288K | 298K | 308K | |||
纯PPy | -14.38 | -14.96 | -16.57 | 8.561 | 0.087 |
ARG/PPy | -14.82 | -15.97 | -17.39 | 14.732 | 0.110 |
MO/PPy | -15.02 | -16.06 | -17.69 | 6.683 | 0.084 |
α-CD/MO/PPy | -15.19 | -16.36 | -18.13 | 11.902 | 0.105 |
1 | 雷绍民, 郭振华. 氟污染的危害及含氟废水处理技术研究进展[J]. 金属矿山, 2012, 430(4): 152-155. |
LEI Shaomin, GUO Zhenhua. Hazards of fluoride pollution and technical research progress of treating fluoride-containing wastewater [J]. Metal Mine, 2012, 430(4): 152-155. | |
2 | DHARMARATNE R W. Fluoride in drinking water and diet: the causative factor of chronic kidney diseases in the North Central Province of Sri Lanka [J]. Environmental Health and Preventive Medicine, 2015, 20(4): 237-242. |
3 | HUANG Haiming, LIU Jiahui, ZHANG Peng, et al. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation [J]. Chemical Engineering Journal, 2017, 307: 696-706. |
4 | 李兴扬, 王茹, 张旭, 等. 乳状液膜分离富集氟离子的应用研究[J]. 化工进展, 2014, 33(9): 2304-2308, 2320. |
LI Xingyang, WANG Ru, ZHANG Xu, et al. Separation and preconcentration of fluoride by emulsion liquid membrane system [J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2304-2308, 2320. | |
5 | ZHANG Qingrui, VOLISETTY S, CAO Yiping, et al. Selective and efficient removal of fluoride from water: in situ engineered amyloid fibril/ZrO2 hybrid membranes [J]. Angewandte Chemie International Edition, 2019, 58(18): 6012-6016. |
6 | GRZEGORZEK M, MAJEWSKA-NOWAK K, AHMED A E. Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes [J]. Science of the Total Environment, 2020, 722: 137681. |
7 | BHATNAGAR A, KUMAR E, SILLANPAA M. Fluoride removal from water by adsorption—A review [J]. Chemical Engineering Journal, 2011, 171(3): 811-840. |
8 | TANG Dandan, ZHANG Gaoke. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: thermodynamics, kinetics and mechanism [J]. Chemical Engineering Journal, 2016, 283: 721-729. |
9 | CASCALES J J L, OTERO T F. Molecular dynamic simulation of the hydration and diffusion of chloride ions from bulk water to polypyrrole matrix [J]. Journal of Chemical Physics, 2004, 120(4): 1951-1957. |
10 | VERNITSKAYA T V, EFIMOV O N. Polypyrrole: a conducting polymer; its synthesis, properties and applications [J]. Russian Chemical Reviews, 1997, 66(5): 489-505. |
11 | KARTHIKEYAN M, SATHEESHKUMAR K K, ELANGO K P. Removal of fluoride ions from aqueous solution by conducting polypyrrole [J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 300-305. |
12 | LI Chunlu, CHEN Nan, ZHAO Yanan, et al. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: sorption capability and mechanism [J]. Chemosphere, 2016, 163: 81-89. |
13 | FENG Jiangtao, YAN Wei, ZHU Jinwei. Synthesis of novel hexagonal micro-sheet polypyrrole and micro-sheet polypyrrole with grooves in the presence of alpha-cyclodextrin/Acid Red G inclusion compounds [J]. Synthetic Metals, 2010, 160(9/10): 939-945. |
14 | FENG Jiangtao, LI Jingjing, Wei LYU, et al. Synthesis of polypyrrole nano-fibers with hierarchical structure and its adsorption property of Acid Red G from aqueous solution [J]. Synthetic Metals, 2014, 191: 66-73. |
15 | DAI Tingyang, LU Yun. Water-soluble methyl orange fibrils as versatile templates for the fabrication of conducting polymer microtubules [J]. . Macromolecular Rapid Communications, 2007, 28(5): 629-633. |
16 | OMASTOVA M, TRCHOVA M, KOVAROVA J, et al. Synthesis and structural study of polypyrroles prepared in the presence of surfactants [J]. Synthetic Metals, 2003, 138(3): 447-455. |
17 | LEOFANTI G, PADOVAN M, TOZZOLA G, et al. Surface area and pore texture of catalysts [J]. Catalysis Today, 1998, 41(1/2/3): 207-219. |
18 | ZHANG X, BAI Renbi, TONG Yen Wah. Selective adsorption behaviors of proteins on polypyrrole-based adsorbents [J]. Separation and Purification Technology, 2006, 52(1): 161-169. |
19 | YU Yang, YU Ling, CHEN J P. Adsorption of fluoride by Fe-Mg-La triple-metal composite: adsorbent preparation, illustration of performance and study of mechanisms [J]. Chemical Engineering Journal, 2015, 262: 839-846. |
20 | ESKANDARPOUR A, ONYANGO M S, OCHIENG A, et al. Removal of fluoride ions from aqueous solution at low pH using schwertmannite [J]. Journal of Hazardous Materials, 2008, 152(2): 571-579. |
21 | SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics [J]. Chemical Engineering Journal, 2016, 300: 254-263. |
22 | HAMED M M, RIZK S E, NAYL A A. Adsorption kinetics and modeling of gadolinium and cobalt ions sorption by an ion-exchange resin [J]. Particulate Science & Technology, 2016, 34(6): 716-724. |
23 | OMRAEI M, ESFANDIAN H, KATAL R, et al. Study of the removal of Zn(Ⅱ) from aqueous solution using polypyrrole nanocomposite [J]. Desalination, 2011, 271(1/2/3): 248-256. |
24 | KARTHIK R, MEENAKSHI S. Chemical modification of chitin with polypyrrole for the uptake of Pb(Ⅱ) and Cd(Ⅱ) ions [J]. International Journal of Biological Macromolecules, 2015, 78: 157-164. |
25 | KARTHIKEYAN M, SATHEESHKUMAR K K, ELANGO K P. Defluoridation of water via doping of polyanilines [J]. Journal of Hazardous Materials, 2009, 163(2/3): 1026-1032. |
26 | BHAUMIK M, LESWIFI T Y, MAITY A, et al. Removal of fluoride from aqueous solution by polypyrrole-Fe3O4 magnetic nanocomposite [J]. Journal of Hazardous Materials, 2011, 186(1): 150-159. |
27 | PARASHAR K, BALLAV N, BEBNATH S, et al. Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite [J]. Journal of Colloid and Interface Science, 2016, 476: 103-118. |
28 | CHEN Jie, SHU Chiajung, WANG Ning, et al. Adsorbent synthesis of polypyrrole/TiO2 for effective fluoride removal from aqueous solution for drinking water purification: adsorbent characterization and adsorption mechanism [J]. Journal of Colloid and Interface Science, 2017, 495: 44-52. |
29 | WANG Jianguo, CHEN Nan, LI Miao, et al. Efficient removal of fluoride using polypyrrole-modified biochar derived from slow pyrolysis of pomelo peel: sorption capacity and mechanism [J]. Journal of Polymers and the Environment, 2018, 26: 1559-1572. |
30 | HE Yuxuan, ZHANG Liming, AN Xiao, et al. Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: adsorption isotherms, kinetics, thermodynamics and mechanism [J]. Science of the Total Environment, 2019, 688: 184-198. |
31 | MIKHOPADHYAY M, NASKAR A, GHOSH U C, et al. One-pot synthesis of β-cyclodextrin amended mesoporous cerium(Ⅳ) incorporated ferric oxide surface towards the evaluation of fluoride removal efficiency from contaminated water for point of use [J]. Journal of Hazardous Materials, 2011, 384: 121235. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[9] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[10] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[11] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[12] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
[13] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[14] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[15] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |