Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3389-3400.DOI: 10.16085/j.issn.1000-6613.2020-1305
• Materials science and technology • Previous Articles Next Articles
DUAN Liyuan1,2(), LI Guoqiang1,2(), ZHANG Shuting1,2, WANG Hongyu1,2, ZHAO Yongle1,2, ZHANG Yongfa1,2
Received:
2020-07-10
Revised:
2020-11-12
Online:
2021-06-22
Published:
2021-06-06
Contact:
LI Guoqiang
段丽媛1,2(), 李国强1,2(), 张舒婷1,2, 王宏宇1,2, 赵永乐1,2, 张永发1,2
通讯作者:
李国强
作者简介:
段丽媛(1996—),女,硕士研究生,研究方向为光催化。E-mail:基金资助:
CLC Number:
DUAN Liyuan, LI Guoqiang, ZHANG Shuting, WANG Hongyu, ZHAO Yongle, ZHANG Yongfa. Effect of secondary isothermal condensation modification on the performance of g-C3N4 photocatalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3389-3400.
段丽媛, 李国强, 张舒婷, 王宏宇, 赵永乐, 张永发. 二次等温热缩聚改性对g-C3N4光催化剂性能的影响[J]. 化工进展, 2021, 40(6): 3389-3400.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1305
样品 | 比表面积 /m2·g-1 | 孔容积 /mL·g-1 | 平均孔径 /nm | 罗丹明B降解率 /% |
---|---|---|---|---|
CN-3h | 12.95 | 0.072 | 22.12 | 42 |
CN-4h | 13.40 | 0.071 | 21.28 | 58 |
CN-3h-1h | 15.42 | 0.094 | 24.42 | 71 |
CN-3h-4h | 29.83 | 0.334 | 44.82 | 98 |
样品 | 比表面积 /m2·g-1 | 孔容积 /mL·g-1 | 平均孔径 /nm | 罗丹明B降解率 /% |
---|---|---|---|---|
CN-3h | 12.95 | 0.072 | 22.12 | 42 |
CN-4h | 13.40 | 0.071 | 21.28 | 58 |
CN-3h-1h | 15.42 | 0.094 | 24.42 | 71 |
CN-3h-4h | 29.83 | 0.334 | 44.82 | 98 |
样品 | N元素摩尔分数 /%① | C元素摩尔分数 /%① | 三种N拟合峰含量与总N含量比/%② | 三种C拟合峰含量与总C含量比/%② | ||||
---|---|---|---|---|---|---|---|---|
C—N | N—(C)3 | C—NH | N—C | C—C | C—NHx | |||
CN-3h | 48.48 | 32.61 | 77 | 19 | 10 | 76 | 22 | 2 |
CN-4h | 48.68 | 32.31 | 75 | 16 | 9 | 77 | 21 | 2 |
CN-3h-1h | 47.85 | 32.85 | 76 | 16 | 8 | 71 | 26 | 3 |
CN-3h-4h | 47.86 | 32.90 | 78 | 15 | 7 | 76 | 22 | 2 |
样品 | N元素摩尔分数 /%① | C元素摩尔分数 /%① | 三种N拟合峰含量与总N含量比/%② | 三种C拟合峰含量与总C含量比/%② | ||||
---|---|---|---|---|---|---|---|---|
C—N | N—(C)3 | C—NH | N—C | C—C | C—NHx | |||
CN-3h | 48.48 | 32.61 | 77 | 19 | 10 | 76 | 22 | 2 |
CN-4h | 48.68 | 32.31 | 75 | 16 | 9 | 77 | 21 | 2 |
CN-3h-1h | 47.85 | 32.85 | 76 | 16 | 8 | 71 | 26 | 3 |
CN-3h-4h | 47.86 | 32.90 | 78 | 15 | 7 | 76 | 22 | 2 |
1 | TORRES-PINTO A, SAMPAIO M J, SILVA C G, et al. Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds[J]. Applied Catalysis B: Environmental, 2019, 252: 128-137. |
2 | 李成伟, 张安超, 宋军, 等. Ag/BiOI光催化剂湿法脱除烟气中气态单质汞性能及机理[J]. 化工进展, 2018, 37(4): 1442-1450. |
LI Chengwei, ZHANG Anchao, SONG Jun, et al. Mechanism and performance of wet process to remove gaseous elemental mercury from flue gas using Ag/BiOI photocatalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1442-1450. | |
3 | 白照杲, 胡芸, 游素珍, 等. Bi2WO6-TiO2复合光催化剂对Cu-EDTA复合污染的高效光催化协同处理[J]. 化工进展, 2017, 36(6): 2164-2170. |
BAI Zhaogao, HU Yun, YOU Suzhen, et al. Synergetic treatment of Cu-EDTA on Bi2WO6-TiO2 composite photocatalysts[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2164-2170. | |
4 | HU K, WEI Z Y, YANG Z X, et al. One-step synthesis of few layers g-C3N4 with suitable band structure and enhanced photocatalytic activities[J]. Chemical Physics Letters, 2019, 732: 136613. |
5 | LIU J H, ZHANG T K, WANG Z C, et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity[J]. Journal of Materials Chemistry, 2011, 21(38): 14398. |
6 | XIN G, MENG Y L. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue[J]. Journal of Chemistry, 2013, 2013: 1-5. |
7 | XU J, WANG Y, ZHU Y. Nanoporous graphitic carbon nitride with enhanced photocatalytic performance[J]. Langmuir, 2013, 29(33): 10566-10572. |
8 | FAN X Q, XING Z, SHU Z, et al. Improved photocatalytic activity of g-C3N4 derived from cyanamide-urea solution[J]. RSC Advances, 2015, 5(11): 8323-8328. |
9 | CUI Y J, WANG Y X, WANG H, et al. Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation[J]. Chinese Journal of Catalysis, 2016, 37(11): 1899-1906. |
10 | HONG J D, XIA X Y, WANG Y S, et al. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light[J]. Journal of Materials Chemistry, 2012, 22(30): 15006. |
11 | CUI Y J, WANG Y X, WANG H, et al. Polycondensation of ammonium thiocyanate into novel porous g-C3N4 nanosheets as photocatalysts for enhanced hydrogen evolution under visible light irradiation[J]. Chinese Journal of Catalysis, 2016, 37(11): 1899-1906. |
12 | ZHANG S T, LI G Q, WANG H Y, et al. Study on the pyrolysis of ammonium thiocyanate and its product formation characteristics in H2[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 427-438. |
13 | LARSEN F K, HASEN MAMAKHEL A, OVERGAARD J, et al. Accessing the rich carbon nitride materials chemistry by heat treatments of ammonium thiocyanate, NH4SCN[J]. Acta Crystallographica Section B, 2019, 75(4): 621-633. |
14 | 李宇涵. 石墨型碳化氮的微/纳观结构优化及可见光催化净化气相NO的性能增强机制[D]. 重庆: 重庆工商大学, 2015. |
LI Yuhan. Optimization of the micro/nano structure of graphitic carbon nitride and enhancement mechanism of visible light photocatalytic removal of gaseous NO[D]. Chongqing: Chongqing Technology and Business University, 2015. | |
15 | 张晓君, 李佳乐, 刘一儒, 等. 固相研磨法制备AgI/Ag3PO4复合光催化剂及其光催化性能[J]. 化工进展, 2019, 38(2): 892-898. |
ZHANG Xiaojun, LI Jiale, LIU Yiru, et al. Synthesis of AgI/Ag3PO4composite photocatalysts using solid state grinding method and their photocatalytic activities[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 892-898. | |
16 | 严平, 占昌朝, 曹小华, 等. 原位合成H4SiW12O40@C协同UV/H2O2降解罗丹明B模拟废水[J]. 化工进展, 2015, 34(3): 872-878. |
YAN Ping, ZHAN Changchao, CAO Xiaohua, et al. Synergetic degradation of Rhodamine B in simulated wastewater using ultraviolet and hydrogen peroxide catalyzed by H4SiW12O40@C synthesized in situ[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 872-878. | |
17 | CUI Y J, ZHANG J S, ZHANG G G, et al. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry, 2011, 21(34): 13032. |
18 | ZHANG X Z, CHUN Y. Preparation of MgO/g-C3N4 composite and it enhanced photocatalytic activity[C]//Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences. October10-11, 2015. |
Jinan, China. Paris: Atlantis Press, 2015: 509-521. | |
19 | CHAI B, YAN J T, WANG C L, et al. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride[J]. Applied Surface Science, 2017, 391: 376-383. |
20 | 郭志伟, 许亮. H.P.F法脱硫工艺[J]. 硅谷, 2011(6): 40. |
GUO Zhiwei, XU Liang. H.P.F desulfurization process[J]. Silicon Valley, 2011(6): 40. | |
21 | 张翠翠. 脱硫废液提盐回收技术[D]. 太原: 太原理工大学, 2013. |
ZHANG Cuicui. Study on reusing the technology of waste liquid generated desulfrization[D]. Taiyuan: Taiyuan University of Technology, 2013. | |
22 | LIU Q, WANG X L, YANG Q, et al. Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution[J]. Applied Surface Science, 2018, 450: 46-56. |
23 | KANG X D, KANG Y Y, HONG X X, et al. Improving the photocatalytic activity of graphitic carbon nitride by thermal treatment in a high-pressure hydrogen atmosphere[J]. Progress in Natural Science: Materials International, 2018, 28(2): 183-188. |
24 | DING W, LIU S Q, HE Z. One-step synthesis of graphitic carbon nitride nanosheets for efficient catalysis of phenol removal under visible light[J]. Chinese Journal of Catalysis, 2017, 38(10): 1711-1718. |
25 | CHEN Q Y, DU F, CHENG C, et al. Enhancing hydrogen evolution of g-C3N4 with nitrogen vacancies by ethanol thermal treatment[J]. Journal of Nanoparticle Research, 2018, 20(4): 1-9. |
26 | XU Q L, ZHU B C, CHENG B, et al. Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites[J]. Applied Catalysis B: Environmental, 2019, 255: 117770. |
27 | HONG Y Z, LIU E L, SHI J Y, et al. A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7194-7204. |
28 | SUN S, FAN E, XU H, et al. Enhancement of photocatalytic activity of g-C3N4 by hydrochloric acid treatment of melamine[J]. Nanotechnology, 2019, 30(31): 315601. |
29 | HAN D Y, LIU J, CAI H, et al. High-yield and low-cost method to synthesize large-area porous g-C3N4 nanosheets with improved photocatalytic activity for gaseous nitric oxide and 2-propanol photodegradation[J]. Applied Surface Science, 2019, 464: 577-585. |
30 | SHAN X, GE G F, ZHAO Z K. Facile and scalable fabrication of porous g-C3N4 nanosheets with nitrogen defects and oxygen-doping for synergistically promoted visible light photocatalytic H2 evolution[J]. Energy Technology, 2019, 7(5): 1800886. |
31 | SHI J H, FENG S T, CHEN T, et al. Effect of porous modification on the synthesis and photocatalytic activity of graphitic carbon nitride/carbon quantum dot nanocomposite[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(20): 17454-17462. |
32 | LIU J Y, YAN J, JI H Y, et al. Controlled synthesis of ordered mesoporous g-C3N4 with a confined space effect on its photocatalytic activity[J]. Materials Science in Semiconductor Processing, 2016, 46: 59-68. |
33 | HO W, ZHANG Z Z, XU M K, et al. Enhanced visible-light-driven photocatalytic removal of NO: effect on layer distortion on g-C3N4 by H2 heating[J]. Applied Catalysis B: Environmental, 2015, 179: 106-112. |
34 | YANG L R, LIU X Y, LIU Z G, et al. Enhanced photocatalytic activity of g-C3N4 2D nanosheets through thermal exfoliation using dicyandiamide as precursor[J]. Ceramics International, 2018, 44(17): 20613-20619. |
35 | BOORBOOR AZIMI E, BADIEI A, HOSSAINI SADR M, et al. A template-free method to synthesize porous G-C3N4 with efficient visible light photodegradation of organic pollutants in water[J]. Advanced Powder Technology, 2018, 29(11): 2785-2791. |
36 | LIAO J Z, CUI W, LI J Y, et al. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4[J]. Chemical Engineering Journal, 2020, 379: 122282. |
37 | YU W W, SHAN X, ZHAO Z K. Unique nitrogen-deficient carbon nitride homojunction prepared by a facile inserting-removing strategy as an efficient photocatalyst for visible light-driven hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 269: 118778. |
38 | LIU M J, ZHANG D P, HAN J L, et al. Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies[J]. Chemical Engineering Journal, 2020, 382: 123017. |
39 | ZHOU B, WAQAS M, YANG B, et al. Convenient one-step fabrication and morphology evolution of thin-shelled honeycomb-like structured g-C3N4 to significantly enhance photocatalytic hydrogen evolution[J]. Applied Surface Science, 2020, 506: 145004. |
40 | ANDRYUSHINA N, SHVALAGIN V, KORZHAK G, et al. Photocatalytic evolution of H2 from aqueous solutions of two-component electron-donor substrates in the presence of g-C3N4 activated by heat treatment in the KCl + LiCl melt[J]. Applied Surface Science, 2019, 475: 348-354. |
41 | HUANG Q, YU J G, CAO S W, et al. Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4[J]. Applied Surface Science, 2015, 358: 350-355. |
42 | LAN Y L, LI Z S, LI D H, et al. Graphitic carbon nitride synthesized at different temperatures for enhanced visible-light photodegradation of 2-naphthol[J]. Applied Surface Science, 2019, 467/468: 411-422. |
43 | YI J J, LIAO J Z, XIA K X, et al. Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal[J]. Chemical Engineering Journal, 2019, 370: 944-951. |
44 | XU Y G, GE F Y, CHEN Z G, et al. One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance[J]. Applied Surface Science, 2019, 469: 739-746. |
45 | SADIQ M M J, SHENOY U S, BHAT D K. Synthesis of BaWO4/NRGO-g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Frontiers of Materials Science, 2018, 12(3): 247-263. |
46 | LI H L, JIN C, WANG Z Y, et al. Effect of the intra- and inter-triazine N-vacancies on the photocatalytic hydrogen evolution of graphitic carbon nitride[J]. Chemical Engineering Journal, 2019, 369: 263-271. |
47 | KANG S F, ZHANG L, HE M F, et al. “Alternated cooling and heating” strategy enables rapid fabrication of highly-crystalline g-C3N4 nanosheets for efficient photocatalytic water purification under visible light irradiation[J]. Carbon, 2018, 137: 19-30. |
48 | BAI J, SUN Y Z, LI M Y, et al. The effect of phosphate modification on the photocatalytic H2O2 production ability of g-C3N4 catalyst prepared via acid-hydrothermal post-treatment[J]. Diamond and Related Materials, 2018, 87: 1-9. |
49 | ZHU K X, LV Y, LIU J, et al. Explosive thermal exfoliation of intercalated graphitic carbon nitride for enhanced photocatalytic degradation properties[J]. Ceramics International, 2019, 45(3): 3643-3647. |
50 | ZHONG Y J, WANG Z Q, FENG J Y, et al. Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine[J]. Applied Surface Science, 2014, 295: 253-259. |
51 | LI X X, WAN T, QIU J Y, et al. In-situ photocalorimetry-fluorescence spectroscopy studies of RhB photocatalysis over Z-scheme g-C3N4@Ag@Ag3PO4 nanocomposites: a pseudo-zero-order rather than a first-order process[J]. Applied Catalysis B: Environmental, 2017, 217: 591-602. |
52 | BO L L, HU Y S, ZHANG Z X, et al. Efficient photocatalytic degradation of Rhodamine B catalyzed by SrFe2O4/g-C3N4 composite under visible light[J]. Polyhedron, 2019, 168: 94-100. |
53 | AKHUNDI A, HABIBI-YANGJEH A. Novel g-C3N4/Ag2SO4 nanocomposites: fast microwave-assisted preparation and enhanced photocatalytic performance towards degradation of organic pollutants under visible light[J]. Journal of Colloid and Interface Science, 2016, 482: 165-174. |
54 | ZHOU M, DONG G H, MA J L, et al. Photocatalytic removal of NO by intercalated carbon nitride: the effect of group IIA element ions[J]. Applied Catalysis B: Environmental, 2020, 273: 119007. |
55 | SUN Z C, ZHU M S, LYU X, et al. Insight into iron group transition metal phosphides (Fe2P, Co2P, Ni2P) for improving photocatalytic hydrogen generation[J]. Applied Catalysis B: Environmental, 2019, 246: 330-336. |
[1] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[2] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[5] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[6] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[7] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[8] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[9] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[10] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[11] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[14] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[15] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |