Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2389-2400.DOI: 10.16085/j.issn.1000-6613.2020-1257
• Chemical processes and equipment • Previous Articles Next Articles
WANG Yan1(), CAO Zhikang1, WANG Yingyao1, HU Qiong1(), HU Peng1, XIAO Yexiang2
Received:
2020-08-08
Online:
2021-05-24
Published:
2021-05-06
Contact:
HU Qiong
王衍1(), 曹志康1, 王英尧1, 胡琼1(), 胡鹏1, 肖业祥2
通讯作者:
胡琼
作者简介:
王衍(1989—),男,博士,副教授,研究方向为流体机械与密封技术。E-mail:基金资助:
CLC Number:
WANG Yan, CAO Zhikang, WANG Yingyao, HU Qiong, HU Peng, XIAO Yexiang. Validation of flow regime prediction model and differences of velocity component selection for rotating flow field[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2389-2400.
王衍, 曹志康, 王英尧, 胡琼, 胡鹏, 肖业祥. 旋转流场流态预测模型验证及其速度分量选择的差异性[J]. 化工进展, 2021, 40(5): 2389-2400.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1257
速度 分量 | 方式一 | 方式二 | 方式三 |
---|---|---|---|
剪切速度 | — | ||
径向速度 | |||
轴向速度 | Va-max | — |
速度 分量 | 方式一 | 方式二 | 方式三 |
---|---|---|---|
剪切速度 | — | ||
径向速度 | |||
轴向速度 | Va-max | — |
管长l/mm | 管径d/mm | 介质 | 密度/kg·m-3 | 黏度/Pa·s |
---|---|---|---|---|
800 | 20 | 水 | 1000 | 0.001 |
空气 | 1.29 | 1.86×10-5 | ||
管长l/mm | 管径d/mm | 介质 | 密度/kg·m-3 | 黏度/Pa·s |
---|---|---|---|---|
800 | 20 | 水 | 1000 | 0.001 |
空气 | 1.29 | 1.86×10-5 | ||
Re | λ | 说明 | |||
---|---|---|---|---|---|
0.0014 | 0.0024 | 50 | 1000 | 0.25 | Rea<2300,层流区 |
0.0018 | 0.0037 | 60 | 1200 | 0.30 | |
0.0022 | 0.0051 | 70 | 1400 | 0.35 | |
0.0027 | 0.0067 | 80 | 1600 | 0.40 | |
0.0031 | 0.0082 | 90 | 1800 | 0.45 | |
0.0035 | 0.0098 | 100 | 2000 | 0.50 | |
0.0040 | 0.0115 | 110 | 2200 | 0.55 | |
0.0044 | 0.0131 | 120 | 2400 | 0.60 | 2300≤Rea≤4000 过渡区 |
0.0047 | 0.0147 | 130 | 2600 | 0.65 | |
0.0050 | 0.0164 | 140 | 2800 | 0.70 | |
0.0054 | 0.0180 | 150 | 3000 | 0.75 | |
0.0057 | 0.0197 | 160 | 3200 | 0.80 | |
0.0059 | 0.0213 | 170 | 3400 | 0.85 | |
0.0062 | 0.0229 | 180 | 3600 | 0.90 | |
0.0065 | 0.0245 | 190 | 3800 | 0.95 | |
0.0067 | 0.0261 | 200 | 4000 | 1.00 | |
0.0069 | 0.0277 | 210 | 4200 | 1.05 | Rea>4000湍流区 |
0.0072 | 0.0293 | 220 | 4400 | 1.10 | |
0.0074 | 0.0309 | 230 | 4600 | 1.15 |
Re | λ | 说明 | |||
---|---|---|---|---|---|
0.0014 | 0.0024 | 50 | 1000 | 0.25 | Rea<2300,层流区 |
0.0018 | 0.0037 | 60 | 1200 | 0.30 | |
0.0022 | 0.0051 | 70 | 1400 | 0.35 | |
0.0027 | 0.0067 | 80 | 1600 | 0.40 | |
0.0031 | 0.0082 | 90 | 1800 | 0.45 | |
0.0035 | 0.0098 | 100 | 2000 | 0.50 | |
0.0040 | 0.0115 | 110 | 2200 | 0.55 | |
0.0044 | 0.0131 | 120 | 2400 | 0.60 | 2300≤Rea≤4000 过渡区 |
0.0047 | 0.0147 | 130 | 2600 | 0.65 | |
0.0050 | 0.0164 | 140 | 2800 | 0.70 | |
0.0054 | 0.0180 | 150 | 3000 | 0.75 | |
0.0057 | 0.0197 | 160 | 3200 | 0.80 | |
0.0059 | 0.0213 | 170 | 3400 | 0.85 | |
0.0062 | 0.0229 | 180 | 3600 | 0.90 | |
0.0065 | 0.0245 | 190 | 3800 | 0.95 | |
0.0067 | 0.0261 | 200 | 4000 | 1.00 | |
0.0069 | 0.0277 | 210 | 4200 | 1.05 | Rea>4000湍流区 |
0.0072 | 0.0293 | 220 | 4400 | 1.10 | |
0.0074 | 0.0309 | 230 | 4600 | 1.15 |
Re | λ | 说明 | |||
---|---|---|---|---|---|
0.0189 | 0.1360 | 700 | 970.97 | 0.24 | Rea<2300, 层流区 |
0.0275 | 0.1067 | 900 | 1248.39 | 0.31 | |
0.0363 | 0.2875 | 1100 | 1525.81 | 0.38 | |
0.0449 | 0.2299 | 1300 | 1803.23 | 0.45 | |
0.0534 | 0.2814 | 1500 | 2080.65 | 0.52 | |
0.0616 | 0.4879 | 1700 | 2358.06 | 0.59 | 2300≤Rea≤4000 过渡区 |
0.0687 | 0.5708 | 1900 | 2635.48 | 0.66 | |
0.0755 | 0.3491 | 2100 | 2912.90 | 0.73 | |
0.0815 | 0.3629 | 2300 | 3190.32 | 0.80 | |
0.0871 | 0.4347 | 2500 | 3467.74 | 0.87 | |
0.0923 | 0.5172 | 2700 | 3745.16 | 0.94 | |
0.0972 | 0.6076 | 2900 | 4022.58 | 1.01 | Rea>4000 湍流区 |
0.1018 | 0.7070 | 3100 | 4300.00 | 1.08 | |
0.1063 | 0.8353 | 3300 | 4577.42 | 1.14 | |
0.1105 | 0.9367 | 3500 | 4854.84 | 1.21 | |
0.1147 | 1.0440 | 3700 | 5132.26 | 1.28 | |
0.1190 | 1.1777 | 3900 | 5409.68 | 1.35 |
Re | λ | 说明 | |||
---|---|---|---|---|---|
0.0189 | 0.1360 | 700 | 970.97 | 0.24 | Rea<2300, 层流区 |
0.0275 | 0.1067 | 900 | 1248.39 | 0.31 | |
0.0363 | 0.2875 | 1100 | 1525.81 | 0.38 | |
0.0449 | 0.2299 | 1300 | 1803.23 | 0.45 | |
0.0534 | 0.2814 | 1500 | 2080.65 | 0.52 | |
0.0616 | 0.4879 | 1700 | 2358.06 | 0.59 | 2300≤Rea≤4000 过渡区 |
0.0687 | 0.5708 | 1900 | 2635.48 | 0.66 | |
0.0755 | 0.3491 | 2100 | 2912.90 | 0.73 | |
0.0815 | 0.3629 | 2300 | 3190.32 | 0.80 | |
0.0871 | 0.4347 | 2500 | 3467.74 | 0.87 | |
0.0923 | 0.5172 | 2700 | 3745.16 | 0.94 | |
0.0972 | 0.6076 | 2900 | 4022.58 | 1.01 | Rea>4000 湍流区 |
0.1018 | 0.7070 | 3100 | 4300.00 | 1.08 | |
0.1063 | 0.8353 | 3300 | 4577.42 | 1.14 | |
0.1105 | 0.9367 | 3500 | 4854.84 | 1.21 | |
0.1147 | 1.0440 | 3700 | 5132.26 | 1.28 | |
0.1190 | 1.1777 | 3900 | 5409.68 | 1.35 |
外径ro /mm | 内径ri /mm | 膜厚h /μm | 介质压力 /MPa | 环境压力 /MPa | 介质 | 密度 /kg·m-3 | 黏度 /Pa·s |
---|---|---|---|---|---|---|---|
77.78 | 58.42 | 3 | 0.5 | 0.103 | 水 | 1000 | 0.001 |
空气 | 1.29 | 1.86×10-5 | |||||
外径ro /mm | 内径ri /mm | 膜厚h /μm | 介质压力 /MPa | 环境压力 /MPa | 介质 | 密度 /kg·m-3 | 黏度 /Pa·s |
---|---|---|---|---|---|---|---|
77.78 | 58.42 | 3 | 0.5 | 0.103 | 水 | 1000 | 0.001 |
空气 | 1.29 | 1.86×10-5 | |||||
外径ro /mm | 内径ri /mm | 槽深hg /mm | 膜厚h /mm | 介质 压力po /MPa | 环境 压力pi /MPa | 转速N /r·min-1 | 介质 | 密度 /kg·m-3 | 黏度 /Pa·s |
---|---|---|---|---|---|---|---|---|---|
77.78 | 58.42 | 3 | 9 | 4 | 0.103 | 0~5000 | 水 | 1000 | 0.001 |
外径ro /mm | 内径ri /mm | 槽深hg /mm | 膜厚h /mm | 介质 压力po /MPa | 环境 压力pi /MPa | 转速N /r·min-1 | 介质 | 密度 /kg·m-3 | 黏度 /Pa·s |
---|---|---|---|---|---|---|---|---|---|
77.78 | 58.42 | 3 | 9 | 4 | 0.103 | 0~5000 | 水 | 1000 | 0.001 |
外径ro /mm | 内径ri /mm | 槽深hg /μm | 膜厚h /μm | 介质 压力po /MPa | 环境 压力pi /MPa | 转速N /r·min-1 | 介质 | 密度 /kg·m-3 | 黏度 /Pa·s |
---|---|---|---|---|---|---|---|---|---|
77.78 | 58.42 | 5 | 5 | 1 | 0.103 | 1×103~1×105 | 空气 | 1.29 | 1.86×10-5 |
外径ro /mm | 内径ri /mm | 槽深hg /μm | 膜厚h /μm | 介质 压力po /MPa | 环境 压力pi /MPa | 转速N /r·min-1 | 介质 | 密度 /kg·m-3 | 黏度 /Pa·s |
---|---|---|---|---|---|---|---|---|---|
77.78 | 58.42 | 5 | 5 | 1 | 0.103 | 1×103~1×105 | 空气 | 1.29 | 1.86×10-5 |
模型 | 上游泵送临界转速/103r·min-1 | 干气密封临界转速/104r·min-1 | ||
---|---|---|---|---|
层流 | 湍流 | 层流 | 湍流 | |
Re | 18 | 31 | 39 | 67 |
ξ | 7 | 13 | 15 | 27 |
λ | — | — | 0.5 | 0.8 |
模型 | 上游泵送临界转速/103r·min-1 | 干气密封临界转速/104r·min-1 | ||
---|---|---|---|---|
层流 | 湍流 | 层流 | 湍流 | |
Re | 18 | 31 | 39 | 67 |
ξ | 7 | 13 | 15 | 27 |
λ | — | — | 0.5 | 0.8 |
1 | BRUNETIERE N, TOURNERIE B, FRENE J. Influence of fluid flow regime on performances of non-contacting liquid face seals[J]. Journal of Tribology, 2002, 124(3): 515-523. |
2 | 丁雪兴, 富影杰, 张静, 等. 基于CFD的螺旋槽干气密封端面流场流态分析[J]. 排灌机械工程学报, 2010, 28(4): 330-334. |
DING Xuexing, FU Yingjie, ZHANG Jing, et al. Fluid state analysis on flow field of gas seal with spiral groove based on CFD[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(4): 330-334. | |
3 | 陈汇龙, 王强, 李雯瑜, 等. 基于Fluent的螺旋槽上游泵送机械密封三维微间隙流场数值模拟[J]. 润滑与密封, 2012, 37(2): 16-18. |
CHEN Huilong, WANG Qiang, LI Wenyu, et al. Numerical simulation of 3-D flow in upstream pumping mechanical seals with spiral grooves based on Fluent[J]. Lubrication Engineering, 2012, 37(2): 16-18. | |
4 | XU J, PENG X D, BAI S X, et al. CFD simulation of microscale flow field in spiral groove dry gas seal[C]//Proceedings of the Mechatronics and Embedded Systems and Applications IEEE/ASME International Conference, Suzhou, 2012. |
5 | FAIRUZ Z M, JAHN I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102: 333-347. |
6 | MAYER E. 机械密封[M]. 6版. 北京: 化学工业出版社, 1981: 170-173. |
MAYER E. Mechanical seal[M]. 6th ed. Beijing: Chemical Industry Press, 1981: 170-173. | |
7 | 马纲, 赵伟, 沈心敏. 螺旋槽气膜密封微间隙流场的三维数值模拟[J]. 润滑与密封, 2012, 37(3): 7-11. |
MA Gang, ZHAO Wei, SHEN Xinmin. Three dimensional numerical simulation of micro-gap flow field in spiral groove membrane seal[J]. Lubrication Engineering, 2012, 37(3): 7-11. | |
8 | YASUNA J A, HUGHES W F. Squeeze film dynamics of two-phase seals: part Ⅱ—turbulent flow[J]. Journal of Tribology, 1994, 114(3): 479-488. |
9 | RANSOM D L, ANDRES L S. Identification of force coefficients from a gas annular seal-effect of transition flow regime to turbulence[J]. Tribology Transactions, 1999, 42 (3): 487-494. |
10 | SHAHIN I, GADALA M, ALQARADAWI M, et al. Three dimensional computational study for spiral dry gas seal with constant groove depth and different tapered grooves[J]. Procedia Engineering, 2013, 68(12): 205-212. |
11 | SUN J J, MA C B, YU Q P, et al. Numerical analysis on a new pump-out hydrodynamic mechanical seal[J]. Tribology International, 2017, 106: 62-70. |
12 | JIANG J B, PENG X D, LI J Y, et al. A comparative study on the performance of typical types of bionic groove dry gas seal based on bird wing[J]. Journal of Bionic Engineering, 2016, 13(2): 324-334. |
13 | WANG Y M, YANG H X, WANG J L, et al. Theoretical analyses and field applications of gas-film lubricated mechanical face seals with herringbone spiral grooves[J]. Tribology Transactions, 2009, 52(6): 800-806. |
14 | SU H, RAHMANI R, RAHNEJAT H. Thermohydrodynamics of bidirectional groove dry gas seals with slip flow[J]. International Journal of Thermal Sciences, 2016, 110: 270-284. |
15 | WANG B, ZHANG H Q, CAO H J. Flow dynamics of a spiral-groove dry-gas seal[J]. Chinese Journal of Mechanical Engineering, 2013, 26(1): 78-84. |
16 | 丁雪兴, 张鹏高, 黄义仿, 等. 螺旋槽干气密封微间隙流场的CFD数值模拟[J]. 化工机械, 2008, 36(5): 287-290. |
DING Xuexing, ZHANG Penggao, HUANG Yifang, et al. Numerical simulation of computational fluid dynamics(CFD) of the micro-scale flow field in the spiral groove dry gas seals[J]. Chemical Engineering & Machinery, 2008, 36(5): 287-290. | |
17 | FELDMAN Y, KLIGERMAN Y, ETSION I, et al. The validity of the reynolds equation in modeling hydrostatic effects in gas lubricated textured parallel surfaces[J]. Journal of Tribology, 2006, 128(2): 345-350. |
18 | 张鸣远. 高等工程流体力学[M]. 北京: 高等教育出版社, 2012: 324-325. |
ZHANG Mingyuan. Advanced engineering fluid mechanics[M]. Beijing: Higher Education Press, 2012: 324-325. | |
19 | 张兆顺. 流体力学[M]. 3版. 北京: 清华大学出版社, 2015: 317-319. |
ZHANG Zhaoshun. Fluid mechanics[M]. 3rd ed. Beijing: Tsinghua University Press, 2015: 317-319. | |
20 | 陈卓如. 工程流体力学[M]. 3版. 北京: 高等教育出版社, 2013: 248-259. |
CHEN Zhuoru. Engineering fluid mechanics[M]. 3rd ed. Beijing: Higher Education Press, 2013: 248-259. | |
21 | 杜建军, 刘暾, 张国庆, 等. 带有圆周方向均压槽的静压气体止推轴承的气锤自激[J]. 润滑与密封, 2010, 35(1): 9-12. |
DU Jianjun, LIU Tun, ZHANG Guoqing, et al. Study of self-excited vibration for externally pressurized gas thrust bearing with circumferential groove[J]. Lubrication Engineering, 2010, 35(1): 9-12. | |
22 | 叶燚玺. 超精密运动平台中气浮支承振动特性的研究[D]. 武汉: 华中科技大学, 2010. |
YE Yixi. Vibration characteristics of ultra precision motion platform in the floating support[D]. Wuhan: Huazhong University of Science and Technology, 2010. | |
23 | 张鸣, 朱煜, 段广洪. 超精密气浮工件台的微振动及其抑制[J]. 制造技术与机床, 2005(11): 47-49. |
ZHANG Ming, ZHU Yu, DUAN Guanghong. Micro-vibration of ultra-precision gas bearing linear motion stage and its elimination[J]. Manufacturing Technology & Machine Tool, 2005(11): 47-49. | |
24 | CHEN X D, HE X M. The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography[J]. Tribology International, 2006, 39(11): 1336-1341. |
25 | 王衍, 葛云路, 黄国庆, 等. 干气密封旋转流场的宏观特性与介观速度场的逻辑关系研究[J].摩擦学学报, 2020, 40(3): 377-390. |
WANG Yan, GE Yunlu, HUANG Guoqing, et al. Study on the logic relationship between macroscopic characteristics and mesoscopic velocity field of high-speed rotating flow field of dry gas seal[J]. Tribology, 2020, 40(3): 377-390. | |
26 | WANG Y, GE Y L, HUANG G Q, et al. Microscale flow field analysis and flow prediction model exploration of dry gas seal[J]. IEEE Access, 2020, 8: 52663-52675. |
27 | 王衍, 胡琼, 肖业祥, 等. 超高速干气密封扰流效应及抑扰机制[J]. 航空学报, 2019, 40(10): 116-125. |
WANG Yan, HU Qiong, XIAO Yexiang, et al. Turbulence effect and suppression mechanism of dry gas seal at ultra-high speeds[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 116-125. | |
28 | 江锦波. 高速干气密封端面型槽仿生设计理论与实验研究[D]. 杭州:浙江工业大学, 2016. |
JIANG Jinbo. Theoretical and experimental study of the bionic design of grooved surface of a high speed dry gas seal[D]. Hangzhou: Zhejiang University of Technology, 2016. | |
29 | 王衍, 孙见君, 陶凯, 等. T型槽气膜密封数值分析及槽型优化[J]. 摩擦学学报, 2014, 34(4):420-427. |
WANG Yan, SUN Jianjun, TAO Kai, et al. Numerical analysis of T-groove dry gas seal and groove optimization[J]. Tribology, 2014, 34(4): 420-427. |
[1] | QI Liang, ZHANG Bo, SHANG Qinyu, WANG Yanbing, CAO Zhikai, LI Wei, ZHOU Hua. A novel method for solution of the one-dimensional dynamic mathematical model of PFR [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 70-76. |
[2] | Jinyuan QIAN, Xiaojuan LI, Zan WU, Minrui CHEN, Zhijiang JIN, Bengt SUNDÉN. Research progress on flow regimes and mass transfer of liquid-liquid two-phase flow in microchannels [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1624-1633. |
[3] | Ning JIANG, Fengyuan GUO, Wenqiao HAN, Huajing LIU, Lu LIN. 3E Optimization of heat exchanger network system based on non-counterflow heat transfer [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 761-771. |
[4] | YAO Yuting, LI Shiyu. A study on high flux heat exchanger used for low-temperature cogeneration system [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3737-3743. |
[5] | TU Gongyi, ZONG Hongyuan, ZHONG Siqing, XU Jun, ZHOU Jing, XIN Zhong. Experimental study on flow characteristics of gas-solid of powdered coal in a fluidized-bed [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 180-186. |
[6] | XU Dehua, JIN Hu, XU Xueqing, QIU Xiaozhong, HE Xinhua, FU Xiaoyi. Preparation and characterization of smart building paints with multiple functions [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3388-3394. |
[7] | HUANG Zhixian, LIN Yixiong, WANG Hongxing, YE Changshen, LI Ling. Numerical simulation of single droplet motion in a high density difference system [J]. Chemical Industry and Engineering Progree, 2016, 35(S2): 61-67. |
[8] | ZHANG Chunwei, CUI Guomin, CHEN Shang. A performance evaluation factor of heat exchanger network based on field synergy [J]. Chemical Industry and Engineering Progree, 2016, 35(12): 3825-3829. |
[9] | HONG Yongqiang, CHEN Guifang, MAO Yanpeng, MA Chunyuan. Distillation characteristics of wet flue gas desulfurization serosity [J]. Chemical Industry and Engineering Progree, 2016, 35(08): 2561-2568. |
[10] | WEI Dan, SONG Huaping, ZHAO Jun. Numerical simulation of interior flow field in new type pressure regulating valve [J]. Chemical Industry and Engineering Progree, 2015, 34(05): 1264-1268. |
[11] | ZHANG Shenglin,CHEN Yongxiang,LI Shuangyue. Effects of process parameters on particle size distribution and productivity of narrow level product in turbo air classifier [J]. Chemical Industry and Engineering Progree, 2014, 33(05): 1113-1117. |
[12] | WAN Yiqun,CUI Guomin,FANG Dajun,PENG Fuyu. Uniformity factor of heat flux in heat exchanger networks [J]. Chemical Industry and Engineering Progree, 2013, 32(09): 2043-2048. |
[13] | DENG Xianhe 1,HONG Yuxiang 1,LIU Haimin 2. Study on improvement of effective heat transfer temperature difference and enhancement of compound heat transfer in laminar flow [J]. Chemical Industry and Engineering Progree, 2012, 31(11): 2390-2394. |
[14] | ZHAO Ye,SUN Lin,LUO Xionglin. Research advances in pinch technology and the synthesis of multipass heat exchanger networks [J]. Chemical Industry and Engineering Progree, 2012, 31(08): 1685-1689. |
[15] | HUA Ben,WU Hao,LIU Erheng. Exergy-economics based method about optimal temperature difference in heat-exchanger [J]. Chemical Industry and Engineering Progree, 2009, 28(7): 1142-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |