Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S2): 26-35.DOI: 10.16085/j.issn.1000-6613.2020-1055
• Chemical processes and equipment • Previous Articles Next Articles
Guomin MIAO(), Haiyan LEI, Chuanshan DAI(), Fei MA
Received:
2020-06-11
Online:
2020-11-17
Published:
2020-11-20
Contact:
Chuanshan DAI
通讯作者:
戴传山
作者简介:
苗国民(1994—),男,硕士研究生,研究方向为微尺度传热。E-mail:基金资助:
CLC Number:
Guomin MIAO, Haiyan LEI, Chuanshan DAI, Fei MA. Natural convection heat transfer characteristics of coupled surface tension outside the tube in a closed cavity[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 26-35.
苗国民, 雷海燕, 戴传山, 马非. 耦合表面张力的封闭腔体内管外自然对流传热特性[J]. 化工进展, 2020, 39(S2): 26-35.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1055
Oh数 | 圆柱表面平均Nu数 | 左侧壁面平均Nu数 |
---|---|---|
∞ | 1.014 | 1.466 |
0.388 | 1.073 | 1.508 |
0.122 | 1.625 | 2.837 |
Oh数 | 圆柱表面平均Nu数 | 左侧壁面平均Nu数 |
---|---|---|
∞ | 1.014 | 1.466 |
0.388 | 1.073 | 1.508 |
0.122 | 1.625 | 2.837 |
Ra数 | 圆柱表面平均Nu数 | 方腔左侧壁面平均Nu数 |
---|---|---|
103 | 1.213 | 2.124 |
104 | 1.193 | 1.986 |
105 | 1.625 | 2.837 |
106 | 2.0478 | 3.914 |
Ra数 | 圆柱表面平均Nu数 | 方腔左侧壁面平均Nu数 |
---|---|---|
103 | 1.213 | 2.124 |
104 | 1.193 | 1.986 |
105 | 1.625 | 2.837 |
106 | 2.0478 | 3.914 |
1 | NARAHARI M, SURESH Kumar Raju S, PENDYALA R. Unsteady natural convection flow of multi-phase nanofluid past a vertical plate with constant heat flux[J]. Chemical Engineering Science, 2017, 167: 229-241. |
2 | LU Y W, LI X L, DU W B, et al. Laminar natural convection heat transfer characteristics of molten salt around horizontal cylinder[J]. Energy Procedia, 2015, 69: 681-688. |
3 | ZHANG T, CHE D. Double MRT thermal lattice Boltzmann simulation for MHD natural convection of nanofluids in an inclined cavity with four square heat sources[J]. International Journal of Heat and Mass Transfer., 2016, 94: 87-100. |
4 | CHEN W R. A numerical study of laminar free convection heat transfer between inner sphere and outer vertical cylinder[J]. International Journal of Heat and Mass Transfer., 2007, 50(13/14): 2656-2666. |
5 | IYI D, HASAN R. Natural convection flow and heat transfer in an enclosure containing staggered arrangement of blockages[J]. Procedia Engineering, 2015, 105: 176-183. |
6 | BAÏRI A, ZARCO-PERNIA E, GARCÍA De María J M. A review on natural convection in enclosures for engineering applications. the particular case of the parallelogrammic diode cavity[J]. Applied Thermal Engineering, 2014, 63(1): 304-322. |
7 | XU D, HU Y, LI D. A lattice Boltzmann investigation of two-phase natural convection of Cu-water nanofluid in a square cavity[J]. Case Studies in Thermal Engineering, 2019, 13: 100358. |
8 | LEPORINI M, CORVARO F, MARCHETTI B, et al. Experimental and numerical investigation of natural convection in tilted square cavity filled with air[J]. Experimental Thermal and Fluid Science, 2018, 99: 572-583. |
9 | CIANFRINI C, CORCIONE M, HABIB E. Free convection heat transfer from a horizontal cylinder affected by a downstream parallel cylinder of different diameter[J]. International Journal of Thermal Sciences, 2006, 45(9): 923-931. |
10 | VAROL Y, OZTOP H F, KOCA A, et al. Natural convection and fluid flow in inclined enclosure with a corner heater[J]. Applied Thermal Engineering, 2009, 29(2/3): 340-350. |
11 | EL-GENDI M M. Numerical simulation of unsteady natural convection flow inside a pattern of connected open square cavities[J]. International Journal of Thermal Sciences, 2018, 127: 373-383. |
12 | Ö ATAYILMAZ S. Experimental and numerical study of natural convection heat transfer from horizontal concentric cylinders[J]. International Journal of Thermal Sciences, 2011, 50(8): 1472-1483. |
13 | SONDUR S, MESCHER A M. Investigation on the stability of natural convection in an annular cavity with non-isothermal walls[J]. Experimental Thermal and Fluid Science, 2020, 115: 110053. |
14 | KHATAMIFAR M, LIN W, ARMFIELD S W, et al. Conjugate natural convection heat transfer in a partitioned differentially-heated square cavity[J]. International Communications in Heat and Mass Transfer., 2017, 81: 92-103. |
15 | SALEH H, ARBIN N, ROSLAN R, et al. Visualization and analysis of surface tension and cooling effects on differentially heated cavity using heatline concept[J]. International Journal of Heat and Mass Transfer., 2012, 55(21/22): 6000-6009. |
16 | EL-GENDI M M, ALLAH A ALY ABD. Numerical simulation of natural convection using unsteady compressible navier-stokes equations[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2017, 27(11): 2508-2527. |
17 | ALSABERY A I, MOHEBBI R, CHAMKHA A J, et al. Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder[J]. Chemical Engineering Science, 2019, 201: 247-263. |
18 | YAGHOUBI EMAMI R, SIAVASHI M, SHAHRIARI MOGHADDAM G. The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity[J]. Advanced Powder Technology, 2018, 29(3): 519-536. |
19 | WANG L, SHI B, CHAI Z. Effects of temperature-dependent properties on natural convection of nanofluids in a partially heated cubic enclosure[J]. Applied Thermal Engineering, 2018, 128: 204-213. |
20 | WANG L, HUANG C, YANG X, et al. Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution[J]. International Journal of Heat and Mass Transfer., 2019, 128: 688-699. |
21 | HONG C, ASAKO Y, SUZUKI K. Convection heat transfer in concentric micro annular tubes with constant wall temperature[J]. International Journal of Heat and Mass Transfer., 2011, 54(25-26): 5242-5252. |
22 | LEE T S, HU G S, SHU C. Application of GDQ method for the study of natural convection in horizontal eccentric annuli[J]. Numerical Heat Transfer., 2002, 41: 803-815. |
23 | SELIMEFENDIGIL F, ÖZTOP H F. Numerical study and identification of cooling of heated blocks in pulsating channel flow with a rotating cylinder[J]. International Journal of Thermal Sciences, 2014, 79: 132-145. |
24 | HUSAIN S, SIDDIQUI M A. Experimental and numerical analysis of transient natural convection of water in a high aspect ratio narrow vertical annulus[J]. Progress in Nuclear Energy, 2018, 106: 1-10. |
25 | LEE J M, HA M Y, YOON H S. Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations[J]. International Journal of Heat and Mass Transfer., 2010, 53(25-26): 5905-5919. |
26 | FATTAHI E, FARHADI M, SEDIGHI K. Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus[J]. International Journal of Thermal Sciences, 2010, 49(12): 2353-2362. |
27 | KANG S K, HASSAN Y A. A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries[J]. International Journal for Numerical Methods in Fluids, 2011, 66(9): 1132-1158. |
28 | DAI C S, LI M, LEI H Y, et al. Numerical simulation of natural convection between hot and cold microtubes in a cylinder enclosure[J]. International Journal of Thermal Sciences, 2015, 95: 115-122. |
29 | LI G, YANG S. Thermodynamic analysis of free convection film condensation on an elliptical cylinder[J]. Journal of the Chinese Institute of Engineers, 2006, 29(5): 903-908. |
30 | JANSSENS S D, CHAURASIA V, FRIED E. Effect of a surface tension imbalance on a partly submerged cylinder[J]. Journal of Fluid Mechanics, 2017, 830: 369-386. |
31 | KOZHEVNIKOV D A, SHEREMET M A. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension[J]. Continuum Mechanics and Thermodynamics, 2018, 30(1): 83-94. |
32 | LU J H, LEI H Y, DAI C S. A unified thermal lattice Boltzmann equation for conjugate heat transfer problem[J]. International Journal of Heat and Mass Transfer., 2018, 126: 1275-1286. |
33 | LU J H, LEI H Y, DAI C S. A simple difference method for lattice Boltzmann algorithm to simulate conjugate heat transfer[J]. International Journal of Heat and Mass Transfer., 2017, 114: 268-276. |
34 | KANG S K, HASSAN Y A. A direct-forcing immersed boundary method for the thermal lattice Boltzmann method[J]. Computers & Fluids, 2011, 49(1): 36-45. |
35 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2008: 72. |
GUO Zhaoli, ZHENG Chuguang. The principle and application of lattice Boltzmann method [M].Beijing: Science Press, 2008: 72. | |
36 | MORRIS J P. Simulating surface tension with smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2000, 33: 333-353. |
37 | TARTAKOVSKY A, MEAKIN P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics[J]. Physical Review E, 2005, 72(2): 026301. |
38 | MARTYS N S, CHEN H, Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method[J]. Physical Review E, 1996, 53(1): 743-750. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[4] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[5] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[8] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[9] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[10] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[11] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[12] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[13] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[14] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[15] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |