Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 139-150.DOI: 10.16085/j.issn.1000-6613.2020-0486
• Energy processes and technology • Previous Articles Next Articles
Li ZHANG1,2(), Zonglu YAO2, Lixin ZHAO1,2(), Zhihe LI1, Weiming YI1, Peng FU1, Chao YUAN3
Received:
2020-03-30
Online:
2021-01-12
Published:
2021-01-05
Contact:
Lixin ZHAO
仉利1,2(), 姚宗路2, 赵立欣1,2(), 李志合1, 易维明1, 付鹏1, 袁超3
通讯作者:
赵立欣
作者简介:
仉利(1988—),女,博士研究生,研究方向为生物质热解及资源化利用。E-mail:基金资助:
CLC Number:
Li ZHANG, Zonglu YAO, Lixin ZHAO, Zhihe LI, Weiming YI, Peng FU, Chao YUAN. Research progress on preparation of high quality bio-oil by pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150.
仉利, 姚宗路, 赵立欣, 李志合, 易维明, 付鹏, 袁超. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0486
反应器类型 | 优点 | 缺点 |
---|---|---|
流化床热解反应器 | 不含运动部件;结构较为简单;工作可靠性大;处理量大;传热系数高;使用寿命长等 | 需要的流化气流量较多;损失能量较大 |
螺旋反应器 | 原理简单;能耗低;较高热效率;实现连续运行 | 温度分布不均;螺杆和壁面温差较大;热解原料易附着,造成堵塞 |
旋转锥反应器 | 结构紧凑;不需要载气,避免了热解气的稀释,降低了成本;加热效率高,减少生物质热解气二次催化裂解 | 原料粒径要求较小;设备复杂;工作可靠性难以保证(支撑外伸轴的轴承长时间在高温和高粉尘的条件下运行) |
烧蚀式反应器 | 结构简单紧凑;运行能耗低;加热速率快(提高生物油的产率) | 结构和操作复杂(反应物与高温壁面紧密接触,对材料和轴承的性能要求高),不利于大规模生产 |
真空热解反应器 | 系统内压力低;产生的生物质热解气停留时间短 | 油产率不高(生物质升温速率缓慢);能耗高(真空泵功率较大),不利于大规模推广 |
反应器类型 | 优点 | 缺点 |
---|---|---|
流化床热解反应器 | 不含运动部件;结构较为简单;工作可靠性大;处理量大;传热系数高;使用寿命长等 | 需要的流化气流量较多;损失能量较大 |
螺旋反应器 | 原理简单;能耗低;较高热效率;实现连续运行 | 温度分布不均;螺杆和壁面温差较大;热解原料易附着,造成堵塞 |
旋转锥反应器 | 结构紧凑;不需要载气,避免了热解气的稀释,降低了成本;加热效率高,减少生物质热解气二次催化裂解 | 原料粒径要求较小;设备复杂;工作可靠性难以保证(支撑外伸轴的轴承长时间在高温和高粉尘的条件下运行) |
烧蚀式反应器 | 结构简单紧凑;运行能耗低;加热速率快(提高生物油的产率) | 结构和操作复杂(反应物与高温壁面紧密接触,对材料和轴承的性能要求高),不利于大规模生产 |
真空热解反应器 | 系统内压力低;产生的生物质热解气停留时间短 | 油产率不高(生物质升温速率缓慢);能耗高(真空泵功率较大),不利于大规模推广 |
1 | DEMIRBAS A. The social, economic, and environmental importance of biofuels in the future[J]. Energy Sources Part B: Economics Planning and Policy, 2017, 12(1): 47-55. |
2 | HEW K L, TAMIDI A M, YUSUP S, et al. Catalytic cracking of bio-oil to organic liquid product (OLP)[J]. Bioresource Technology, 2010, 101(22): 8855-8858. |
3 | CHEN D, MEI J, LI H, et al. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products[J]. Bioresource Technology, 2017, 228: 62-68. |
4 | YANG Z, KUMAR A, HUHNKE R L. Review of recent developments to improve storage and transportation stability of bio-oil[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 859-870. |
5 | ANTONAKOU E, LAPPAS A, NILSEN M H, et al. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals[J]. Fuel, 2006, 85(14/15): 2202-2212. |
6 | 浮爱青, 谌伦建, 杨洁, 等. 小麦与玉米秸秆的热解过程及其动力学分析[J]. 化学工业与工程, 2009, 26(4): 350-353. |
FU A Q, SHEN L J, YANG J, et al. Pyrolysis process and kinetics analysis of corn stalk and wheat straw[J]. Chemical Industry and Engineering, 2009, 26(4): 350-353. | |
7 | 胡二峰, 赵立欣, 吴娟, 等. 生物质热解影响因素及技术研究进展[J]. 农业工程学报, 2018, 34(14): 212-220. |
HU E F, ZHAO L X, WU J,et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 212-220. | |
8 | 周芳磊, 胡雨燕, 陈德珍. 不同种类生物质热解残焦的CO2气化研究[J]. 太阳能学报, 2017, 38(5): 1440-1446. |
ZHOU F L, HU Y Y, CHEN D Z. Production of CO by CO2 gasification of biomass-derived char[J]. Acta Energiae Solaris Sinica, 2017, 38(5): 1440-1446. | |
9 | 田宜水, 王茹. 基于多升温速率法的典型生物质热动力学分析[J]. 农业工程学报, 2016, 32(3): 234-240. |
TIAN Y S, WANG R. Thermokinetics analysis of biomass based on model-free different heating rate method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 234-240. | |
10 | 杨选民, 王雅君, 邱凌, 等. 温度对生物质三组分热解制备生物炭理化特性的影响[J]. 农业机械学报, 2017, 48(4): 284-290. |
YANG X M, WANG Y J, QIU L, et al. Effect of temperature on physicochemical properties of biochar prepared by pyrolysis of three components of biomass[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 284-290. | |
11 | 姬文心, 曾鸣, 丛宏斌, 等. 生物质热解反应装置研究现状及展望[J].生物质化学工程, 2019, 53(3): 46-58. |
JI W X, ZENG M, CONG H B, et al. Research status and prospects of biomass pyrolysis reactor[J]. Biomass Chemical Engineering, 2019, 53(3): 46-58. | |
12 | LU Q, LI W Z, ZHU X F. Overview of fuel properties of biomass fast pyrolysis oils[J]. Energy Conversion and Management, 2009, 50(5): 1376-1383. |
13 | GARCIAPEREZ M, CHAALA A, PAKDEL H, et al. Vacuum pyrolysis of softwood and hardwood biomass: comparison between product yields and bio-oil properties[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(1): 104-116. |
14 | 罗泽军, 胡永华, 王雨松, 等. 重质生物油理化性质及其热解特性研究[J]. 化工学报, 2019, 70(8): 3196-3201. |
LUO Z J, HU Y H, WANG Y S, et al. Physicochemical properties and pyrolysis characteristics of heavy bio-oil[J]. CIESC Journal, 2019, 70(8): 3196-3201. | |
15 | OASMAA A, MEIER D. Norms and standards for fast pyrolysis liquids: 1. Round robin test[J]. Journal of Analytical and Applied Pyrolysis, 2005, 73(2): 323-334. |
16 | 王昕. 生物质选择性热解制备酚类化合物的研究[D]. 北京: 华北电力大学, 2018. |
WANG X. Selective fast pyrosis of biomass to produce phenolic compounds[D]. Beijing: North China Electric Power University, 2018. | |
17 | 陆强. 生物质选择性热解液化的研究[D]. 北京: 中国科学技术大学, 2010. |
LU Q. Selective fast pyrosis of biomas[D]. Beijing: University of Science and Technology of China, 2010. | |
18 | 李毅, 张哲民, 渠红亮, 等. 生物喷气燃料制备技术研究进展[J]. 石油学报(石油加工), 2013, 29(2): 359-367. |
LI Y, ZHANG Z M, QU H L, et al. Reviewon the progress of producing bio-jet fuel[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2013, 29(2): 359-367. | |
19 | POPOV A, KONDRATIEVA E, MARIEY L, et al. Bio-oil hydrodeoxygenation: adsorption of phenolic compounds on sulfided (Co) Mo catalysts[J]. Journal of Catalysis, 2013, 297: 176-186. |
20 | KUMAR R, STREZOV V, WELDEKIDAN H, et al. Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763. |
21 | WANG S, DAI G, YANG H, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
22 | HOSOYA T, KAWAMOTO H, SAKA S. Pyrolysis behaviors of wood and its constituent polymers at gasification temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 328-336. |
23 | FAN Y, CAI Y, LI X, et al. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method[J]. Energy Conversion and Management, 2017, 138: 106-118. |
24 | CHANG G, HUANG Y, XIE J, et al. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust[J]. Energy Conversion & Management, 2016, 124: 587-597. |
25 | SAHA B C, QURESHI N, KENNEDY G J, et al. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis[J]. International Biodeterioration & Biodegradation, 2016, 109: 29-35. |
26 | DAI L, WANG Y, LIU Y, et al. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 20-36. |
27 | HAO N, BEZERRA T L, WU Q, et al. Effect of autohydrolysis pretreatment on biomass structure and the resulting bio-oil from a pyrolysis process[J]. Fuel, 2017, 206: 494-503. |
28 | ZHENG A, ZHAO Z, HUANG Z, et al. Overcoming biomass recalcitrance for enhancing sugar production from fast pyrolysis of biomass by microwave pretreatment in glycerol[J]. Green Chemistry, 2015, 17(2): 1167-1175. |
29 | BHATIA S K, JAGTAP S S, BEDEKAR A A, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges[J]. Bioresource Technology, 2020, 300: 122724. |
30 | ALVIRA P, TOMASPEJO E, BALLESTEROS M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review[J]. Bioresource Technology, 2010, 101(13): 4851-4861. |
31 | SHEN J, WANG X S, GARCIAPEREZ M, et al. Effects of particle size on the fast pyrolysis of oil mallee woody biomass[J]. Fuel, 2009, 88(10): 1810-1817. |
32 | GARG R, ANAND N, KUMAR D. Pyrolysis of babool seeds (acacia nilotica) in a fixed bed reactor and bio-oil characterization[J]. Renewable Energy, 2016, 96: 167-171. |
33 | KERSTEN S R A, WANG X, PRINS W, et al. Biomass pyrolysis in a fluidized bed reactor. Part 1: Literature review and model simulations[J]. Industrial & Engineering Chemistry Research, 2005, 44(23): 8773-8785. |
34 | WRIGHT M M, DAUGAARD D E, SATRIO J A, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels[J]. Fuel, 2010, 89: S2-S10. |
35 | CHEN D, GAO A, CEN K, et al. Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin[J]. Energy Conversion and Management, 2018, 169: 228-237. |
36 | REN S, LEI H, WANG L, et al. Microwave torrefaction of Douglas fir sawdust pellets[J]. Energy & Fuels, 2012, 26(9): 5936-5943. |
37 | REN S, LEI H, WANG L, et al. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating[J]. Bioresource Technology, 2013, 135: 659-664. |
38 | 陈登宇, 张鸿儒, 刘栋, 等. 烘焙预处理对秸秆热解产物品质及能量分布的影响[J]. 太阳能学报, 2017, 38(2): 565-570. |
CHEN D Y, ZHANG H R, LIU D, et al. Effect of torrefaction pretreatment on properties of pyrolysis product and energy distribution of corn stalk[J]. Acta Energiae Solaris Sinica, 2017, 38(2): 565-570. | |
39 | CHEN D, CEN K, JING X, et al. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment[J]. Bioresource Technology, 2017, 233: 150-158. |
40 | 李攀. 生物质催化热解制备高选择性芳香烃生物油的实验研究[D]. 武汉: 华中科技大学, 2016. |
LI P. Highly selective aromatics by catalytic pyrolysis of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
41 | FENG Y, LI G, LI X, et al. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment[J]. Bioresource Technology, 2016, 214: 520-527. |
42 | MOHAMMED I Y, ABAKR Y A, KAZI F K, et al. Effects of pretreatments of Napier grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics[J]. Waste and Biomass Valorization, 2017, 8(3): 755-773. |
43 | SHI W, LI S, JIA J, et al. Highly efficient conversion of cellulose to bio-oil in hot-compressed water with ultrasonic pretreatment[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 586-593. |
44 | TARVES P C, SERAPIGLIA M J, MULLEN C A, et al. Effects of hot water extraction pretreatment on pyrolysis of shrub willow[J]. Biomass and Bioenergy, 2017, 107: 299-304. |
45 | LE R É, DIOUF P N, STEVANOVIC T. Analytical pyrolysis of hot water pretreated forest biomass[J]. Journal of Analytical and Applied Pyrolysis, 2015, 111: 121-131. |
46 | HUANG Z, WUFUER A, WANG Y, et al. Hydrothermal liquefaction of pretreated low-lipid microalgae for the production of bio-oil with low heteroatom content[J]. Process Biochemistry, 2018, 69: 136-143. |
47 | DICKERSON T, SORIA J. Catalytic fast pyrolysis: a review[J]. Energies, 2013, 6(1): 514-538. |
48 | LOU R, WU S, LV G. Fast pyrolysis of enzymatic/mild acidolysis lignin from moso bamboo[J]. Bioresources, 2010, 5(2): 827-837. |
49 | LOU R, WU S, LV G. Effect of conditions on fast pyrolysis of bamboo lignin[J]. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 191-196. |
50 | REN X Y, ZHANG Z T, WANG W L, et al. Transformation and products distribution of moso bamboo and derived components during pyrolysis[J]. Bioresources, 2013, 8(3): 3685-3698. |
51 | WANG P, ZHAN S, YU H, et al. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue)[J]. Bioresource Technology, 2010, 101(9): 3236-3241. |
52 | 典平鸽, 张乐观, 江程程. 裂解温度对生物质热解焦油成分的影响[J]. 可再生能源, 2012, 30(5): 54-58. |
DIAN P G, ZHANG L G, JIANG C C. The influence of pyrolysis temperature on the component of biomass pyrolytic tar[J]. Renewable Energy Resources, 2012, 30(5): 54-58. | |
53 | 王敬茹,姚宗路,丛宏斌, 等. 生物质炭催化玉米秸秆热解气重整提质研究[J].农业工程学报, 2019, 35(16): 258-264. |
WANG J R, YAO Z L, CONG H B, et al. Upgrading biomass pyrolysis gas from corn stalk by charcoal catalytic reforming[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 258-264. | |
54 | ZHANG H, XIAO R, WANG D, et al. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres[J]. Bioresource Technology, 2011, 102(5): 4258-4264. |
55 | MANTE O D, AGBLEVOR F A, OYAMA S T, et al. The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass[J]. Bioresource Technology, 2012, 111: 482-490. |
56 | 李永玲, 吴占松. 秸秆热解特性及热解动力学研究[J]. 热力发电, 2008(7):1-5. |
LI Y L, WU Z S. Study on charicters and dynamics concerning pyrolysis of corn stalks[J]. Thermal Power Generation, 2008(7): 1-5. | |
57 | 王树荣, 骆仲泱, 董良杰, 等. 几种农林废弃物热裂解制取生物油的研究[J]. 农业工程学报, 2004(2): 246-249. |
WANG S R, LUO Z Y, DONG L J, et al. Experimental study on bio-oil production from biomass of some agricultural and forestry residues[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004(2): 246-249. | |
58 | 王雅君, 李丽洁, 邓媛方, 等. 变速升温对玉米秸秆热解产物特性的影响[J]. 农业机械学报, 2018, 49(4): 337-342, 350. |
WANG Y J, LI L J, DENG Y F, et al. Effect of variable heating rate on pyrolysis process and product characteristics of corn stalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 337-342, 350. | |
59 | WANG K, KIM K H, BROWN R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chemistry, 2014, 16(2): 727-735.. |
60 | STEFANIDIS S D, KALOGIANNIS K G, LLIOPOULOU E F, et al. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor[J]. Bioresource Technology, 2011, 102(17): 8261-8267. |
61 | ADAM J, BLAZSO M, MESZAROS E, et al. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts[J]. Fuel, 2005, 84(12/13): 1494-1502. |
62 | ADAM J, ANTONAKOU E, LAPPAS A, et al. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials[J]. Microporous and Mesoporous Materials, 2006, 96(1/2/3): 93-101. |
63 | NILSEN M H, ANTONAKOU E, BOUZGA A, et al. Investigation of the effect of metal sites in Me-Al-MCM-41 (Me= Fe, Cu or Zn) on the catalytic behavior during the pyrolysis of wooden based biomass[J]. Microporous and Mesoporous Materials, 2007, 105(1/2): 189-203. |
64 | LLIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Applied Catalysis B: Environmental, 2012, 127: 281-290. |
65 | CHEN X, CHEN Y, YANG H, et al. Catalytic fast pyrolysis of biomass: selective deoxygenation to balance the quality and yield of bio-oil[J]. Bioresource Technology, 2019, 273: 153-158. |
66 | ARORA J S, CHEW J W, MUSHRIF S H. Influence of alkali and alkaline-earth metals on the cleavage of glycosidic bond in biomass pyrolysis: a DFT study using cellobiose as a model compound[J]. The Journal of Physical Chemistry A, 2018, 122(38): 7646-7658. |
67 | RAYMUNDO L M, MULLEN C A, STRAHAN G D, et al. Deoxygenation of biomass pyrolysis vapors via in situ and ex situ thermal and biochar promoted upgrading[J]. Energy & Fuels, 2019, 33(3): 2197-2207. |
68 | JAE J, TOMPSETT G A, FOSTER A J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. Journal of Catalysis, 2011, 279(2): 257-268. |
69 | WILLIAMS P T, NUGRANAD N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks[J]. Energy, 2000, 25(6): 493-513. |
70 | TANG S, ZHANG C, XUE X, et al. Catalytic pyrolysis of lignin over hierarchical HZSM-5 zeolites prepared by post-treatment with alkaline solutions[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 86-95. |
71 | YU N, CAI Y, LI X, et al. Catalytic pyrolysis of rape straw for upgraded bio-oil production using HZSM-5 zeolite[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(15): 264-271. |
72 | MENDES F L, XIMENES V L, ALMEIDA M D, et al. Catalytic pyrolysis of sugarcane bagasse and pinewood in a pilot scale unit[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 395-404. |
73 | CHEN X, CHE Q, LI S, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196: 106180. |
74 | LI J, LI X, ZHOU G, et al. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J]. Applied Catalysis A: General, 2014, 470: 115-122. |
75 | ZHENG Y, WANG F, YANG X, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 169-179. |
76 | CHENG Y T, JAE J, SHI J, et al. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angewandte Chemie International Edition, 2012, 51(6): 1387-1390. |
77 | ENGTRAKUL C, MUKARAKATE C, STARACE A K, et al. Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors[J]. Catalysis Today, 2016, 269: 175-181. |
78 | 杨雅, 郭庆杰, 杨林, 等. 碱脱硅改性的HZSM-5分子筛催化裂解小球藻的研究[J]. 太阳能学报, 2016, 37(1): 171-177. |
YANG Y, GUO Q J, YANG L, et al. Catalytic cracking of chlorella over HZSM-5 zeolite modified by desilication in alkalilie medium[J]. Acta Energiae Solaris Sinica, 2016, 37(1): 171-177. | |
79 | ZHANG H, WANG Y, SHAO S, et al. Catalytic conversion of lignin pyrolysis model compound-guaiacol and its kinetic model including coke formation[J]. Scientific Reports, 2016, 6: 37513. |
80 | ZGANG H, SHAO S, XIAO R, et al. Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates[J]. Energy & Fuels, 2014, 28(1): 52-57. |
81 | YANG H, COOLMAN R, KARANJKAR P, et al. The effects of contact time and coking on the catalytic fast pyrolysis of cellulose[J]. Green Chemistry, 2017, 19(1): 286-297. |
82 | DU S, VALLA J A, BOLLAS G M. Characteristics and origin of char and coke from fast and slow, catalytic and thermal pyrolysis of biomass and relevant model compounds[J]. Green Chemistry, 2013, 15(11): 3214-3229. |
83 | STANTON A R, LISA K, MUKARAKATE C, et al. Role of biopolymers in the deactivation of ZSM-5 during catalytic fast pyrolysis of biomass[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10030-10038. |
84 | SHAO S, ZHANG H, WANG Y, et al. Catalytic pyrolysis of biomass-derived compounds: coking kinetics and formation network[J]. Energy & Fuels, 2015, 29(3): 1751-1757. |
85 | ZHANG H, MA Y, SHAO S, et al. The effects of potassium on distributions of bio-oils obtained from fast pyrolysis of agricultural and forest biomass in a fluidized bed[J]. Applied Energy, 2017, 208: 867-877. |
86 | HWANG H, OH S, CHO T S, et al. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products[J]. Bioresource Technology, 2013, 150: 359-366. |
87 | BANKS S W, NOWAKOWSKI D J, BRIDGWATER A V. Impact of potassium and phosphorus in biomass on the properties of fast pyrolysis bio-oil[J]. Energy & Fuels, 2016, 30(10): 8009-8018. |
88 | PATWARDHAN P R, SATRIO J A, BROWN R C, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresource Technology, 2010, 101(12): 4646-4655. |
89 | SADDAWI A, JONES J M, WILLIAMS A. Influence of alkali metals on the kinetics of the thermal decomposition of biomass[J]. Fuel Processing Technology, 2012, 104: 189-197. |
90 | PENG C, ZHANG G, YUE J, et al. Pyrolysis of lignin for phenols with alkaline additive[J]. Fuel Processing Technology, 2014, 124: 212-221. |
91 | DALLUGE D L, KIM K H, BROWN R C. The influence of alkali and alkaline earth metals on char and volatile aromatics from fast pyrolysis of lignin[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 385-393. |
92 | CARVALHO W S, CUNHA I F, PEREIRA M S, et al. Thermal decomposition profile and product selectivity of analytical pyrolysis of sweet sorghum bagasse: effect of addition of inorganic salts[J]. Industrial Crops and Products, 2015, 74: 372-380. |
93 | BRANCA C, DI BLASI C, GALGANO A. Pyrolysis of corncobs catalyzed by zinc chloride for furfural production[J]. Industrial & Engineering Chemistry Research, 2010, 49(20): 9743-9752. |
94 | LU Q, DONG C, ZHANG X, et al. Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(2): 204-212. |
95 | MOCHIZUKI T, ATONG D, CHEN S Y, et al. Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS[J]. Catalysis Communications, 2013, 36: 1-4. |
96 | KAEWPENGKROW P, ATONG D, SRICHAROENCHAIKUL V. Effect of metal oxide/alumina on catalytic deoxygentation of biofuel from physic nut residues pyrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(31): 19629-19640. |
97 | LU Q, XIONG W M, LI W Z, et al. Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds[J]. Bioresource Technology, 2009, 100(20): 4871-4876. |
98 | PUTUN E. Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst[J]. Energy, 2010, 35(7): 2761-2766. |
99 | STEFANIDIS S D, KARAKOULIA S A, KALOGIANNIS K G, et al. Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173. |
100 | EL-RUB Z A, BRAMER E A, BREM G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008, 87(10/11): 2243-2252. |
101 | GAO X, ZHANG Y, XU F, et al. Experimental and kinetic studies on the intrinsic reactivities of rice husk char[J]. Renewable Energy, 2019, 135: 608-616. |
102 | 向玲, 李立松, 李新, 等. 炭基催化剂比表面积、孔径与硫容关系研究[J]. 四川环境, 2014, 33(1): 18-21. |
XIANG L, LI L S, LI X, et al. Study on the relationship between specific surface area, pore volume and sulfur capacity of activated carbon catalyst[J]. Sichuan Environment, 2014, 33(1): 18-21. | |
103 | GUO F, PENG K, LIANG S, et al. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis[J]. Fuel, 2019, 258: 116204. |
104 | LIU Y, PASKVICIUS M, WANG H, et al. Role of O-containing functional groups in biochar during the catalytic steam reforming of tar using the biochar as a catalyst[J]. Fuel, 2019, 253: 441-448. |
105 | 张纯. 外热式内构件移动床低阶碎煤热解技术研究[D]. 北京: 中国科学院研究生院(过程工程研究所), 2015. |
ZHANG C. Pyrolysis of small-size low coal in heated moving bed with internals[D]. Beijing: Graduate School of Chinese Academy of Sciences (Institute of Process Engineering), 2015. | |
106 | HU E, ZENG X, MA D, et al. Characterization of coal pyrolysis in indirectly heated fixed bed based on field effects[J]. Fuel, 2017, 200: 186-192. |
107 | 辛子扬, 葛立超, 冯红翠, 等. 生物质微波热解利用技术综述[J]. 热力发电, 2019, 48(7): 19-31. |
XIN Z Y, GE L C, FENG H C, et al. Application of microwave technology in biomass pyrolysis: a review[J]. Thermal Power Generation, 2019, 48(7): 19-31. | |
108 | WU C, BUDARIN V L, GRONNOW M J, et al. Conventional and microwave-assisted pyrolysis of biomass under different heating rates[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 276-283. |
109 | MORGAN JR H M, BU Q, LIANG J, et al. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals[J]. Bioresource Technology, 2017, 230: 112-121. |
110 | 刘荣厚, 鲁楠, 曹玉瑞, 等. 旋转锥反应器生物质热裂解工艺过程及实验[J]. 沈阳农业大学学报, 1997(4): 307-311. |
LIU R H, LU N, CAO Y R, et al. Technolocical process and experimental research of the rotating cone reactor for biomass pyrolysis[J]. Journal of Shenyang Agricultural University, 1997(4): 307-311. | |
111 | 丛宏斌, 姚宗路, 赵立欣, 等. 生物质连续热解炭气油联产中试系统开发[J]. 农业工程学报, 2017, 33(18): 173-179. |
CONG H B, YAO Z L, ZHAO L X, et al. Development of carbon, gas and oil poly-generation pilot system based on biomass continuous pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(18): 173-179. | |
112 | 高新源, 徐庆, 李占勇, 等. 生物质快速热解装置研究进展[J]. 化工进展, 2016, 35(10): 3032-3041. |
GAO X Y, XU Q, LI Z Y, et al. Progress in the study of biomass fast pyrolysis equipment[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3032-3041. | |
113 | 林木森. 国外生物质快速热解反应器现状[J]. 化学工业与工程技术, 2010, 31(5): 34-36. |
LIN M S. Status of reactors for fast pyrolysis of biomass in abroad[J]. Chemical Industry and Engineering, 2010, 31(5): 34-36. | |
114 | BRIDGWATER A V. Fast pyrolysis of biomass for energy and fuels[J]. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, 2010: 146-191. |
115 | FU P, YI W M, LI Z, et al. Evolution of char structural features during fast pyrolysis of corn straw with solid heat carriers in a novel V-shaped down tube reactor[J]. Energy Conversion and Management, 2017, 149: 570-578. |
116 | KALOGIANNI K G, STEFANIDIS S D, Lappas A A. Catalyst deactivation, ash accumulation and bio-oil deoxygenation during ex situ catalytic fast pyrolysis of biomass in a cascade thermal-catalytic reactor system[J]. Fuel Processing Technology, 2019, 186: 99-109. |
117 | LIU S, ZHANG Y, FAN L, et al. Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis[J]. Fuel, 2017, 196: 261-268. |
118 | 常全超, 杜玉凤, 戴敏, 等.太阳能热解制备生物炭及其对水中铜离子的吸附[J]. 环境工程学报, 2020, 14(11): 2946-2958. |
CHANG Q C, DU Y F, DAI M, et al. Properties of biochar prepared by solar pyrolysis and its adsorption of copper ions in water[J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 2946-2958. | |
119 | 白章. 太阳能与生物质能热化学互补高效利用系统集成与方法[D]. 北京:中国科学院研究生院(工程热物理研究所), 2016. |
BAI Z. Integration mechanism for thermochemical hybrid utilization of solar thermal energy and biomass[D]. Beijing: Chinese Academy of Sciences(Institute of Engineering Thermophysics), 2016. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[15] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |