1 | CHEN J, CEN J, XU X, et al. The application of heterogeneous visible light photocatalysts in organic synthesis[J]. Catalysis Science & Technology, 2016, 6(2): 349-362. | 2 | NICOLAOU K C, MATHISON C J N, MONTAGNON T. New reactions of IBX: oxidation of nitrogen- and sulfur-containing substrates to afford useful synthetic intermediates[J]. Angewandte Chemie International Edition, 2003, 42(34): 4077-4082. | 3 | MUKAIYAMA T, KAWANA A, FUKUDA Y, et al. Oxidation of various secondary amines to imines with N-tert-butylphenylsulfinimidoyl chloride[J]. Chemistry Letters, 2001, 30(5): 390-391. | 4 | FURUKAWA S, OHNO Y, SHISHIDO T, et al. Selective amine oxidation using Nb2O5 photocatalyst and O2[J]. ACS Catalysis, 2011, 1(10): 1150-1153. | 5 | KONG P, LIU P, GE Z, et al. Conjugated HCl-doped polyaniline for photocatalytic oxidative coupling of amines under visible light[J]. Catalysis Science & Technology, 2019, 9(3): 753-761. | 6 | JIANG W, LUO W, ZONG R, et al. Polyaniline/carbon nitride nanosheets composite hydrogel: a separation-free and high-efficient photocatalyst with 3D hierarchical structure[J]. Small, 2016, 12(32): 4370-4378. | 7 | NEELGUND G M, BLIZNYUK V N, OKI A. Photocatalytic activity and NIR laser response of polyaniline conjugated graphene nanocomposite prepared by a novel acid-less method[J]. Applied Catalysis B: Environmental, 2016, 187: 357-366. | 8 | LIU L, DING L, LIU Y, et al. A stable Ag3PO4@PANI core@shell hybrid: enrichment photocatalytic degradation with π-π conjugation[J]. Applied Catalysis B: Environmental, 2017, 201: 92-104. | 9 | LI J, ZHU L, WU Y, et al. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization[J]. Polymer, 2006, 47(21): 7361-7367. | 10 | FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09 Revision D.01[CP]. Gaussian Inc., Wallingford CT, 2013. | 11 | CAO Y, LI S, XUE Z, et al. Spectroscopic and electrical characterization of some aniline oligomers and polyaniline[J]. Synthetic Metals, 1986, 16(3): 305-315. | 12 | TANG J, JING X, WANG B, et al. Infrared spectra of soluble polyaniline[J]. Synthetic Metals, 1988, 24(3): 231-238. | 13 | ZENG X, KO T. Structures and properties of chemically reduced polyanilines[J]. Polymer, 1998, 39(5): 1187-1195. | 14 | TURSUN A, ZHANG X, RUXANGUL J. Comparative studies of solid-state synthesized polyaniline doped with inorganic acids[J]. Materials Chemistry and Physics, 2005, 90(2): 367-372. | 15 | SANCHES E A, SOARES J C, MAFUD A C, et al. Structural characterization of chloride salt of conducting polyaniline obtained by XRD, SAXD, SAXS and SEM[J]. Journal of Molecular Structure, 2013, 1036: 121-126. | 16 | SANCHES E A, SILVA J M S DA, FERREIRA J M D O, et al. Nanostructured polyaniline emeraldine-base form (EB-PANI): a structural investigation for different neutralization times[J]. Journal of Molecular Structure, 2014, 1074: 732-737. | 17 | KUMAR S N, GAILLARD F, BOUYSSOUX G, et al. High-resolution XPS studies of electrochemically synthesized conducting polyaniline films[J]. Synthetic Metals, 1990, 36(1): 111-127. | 18 | WEI X L, FAHLMAN M, EPSTEIN A J. XPS study of highly sulfonated polyaniline[J]. Macromolecules, 1999, 32(9): 3114-3117. | 19 | WAN M, YANG J. Mechanism of proton doping in polyaniline[J]. Journal of Applied Polymer Science, 1995, 55(3): 399-405. | 20 | MACDIARMID A G, CHIANG J C, RICHTER A F, et al. Polyaniline: a new concept in conducting polymers[J]. Synthetic Metals, 1987, 18 (1/2/3): 285-290. | 21 | BHADRA S, SINGHA N K, KHASTGIR D. Polyaniline by new miniemulsion polymerization and the effect of reducing agent on conductivity[J]. Synthetic Metals, 2006, 156(16): 1148-1154. | 22 | JIANG R, DONG S, SONG S. Spectroscopy and electrochemistry of polyaniline in non-aqueous solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1989, 85(7): 1575-1584. | 23 | DMITRIEVA E, HARIMA Y, DUNSCH L. Influence of phenazine structure on polaron formation in polyaniline: in situ electron spin resonance-ultraviolet/visible-near-infrared spectroelectrochemical study[J]. The Journal of Physical Chemistry B, 2009, 113(50): 16131-16141. | 24 | WANG Z H, JAVADI H H S, RAY A, et al. Electron localization in polyaniline derivatives[J]. Physical Review B, 1990, 42(8): 5411-5413. | 25 | BOUDREAUX D S, CHANCE R R, WOLF J F, et al. Theoretical-studies on polyaniline[J]. Journal of Chemical Physics, 1986, 85(8): 4584-4590. | 26 | STAFSTR?M S, BRéDAS J L, EPSTEIN A J, et al. Polaron lattice in highly conducting polyaniline: theoretical and optical studies[J]. Physical Review Letters, 1987, 59(13): 1464-1467. | 27 | ALMASI M J, FANAEI SHEIKHOLESLAMI T, NAGHDI M R. Band gap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method[J]. Composites Part B: Engineering, 2016, 96: 63-68. | 28 | TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physical Status Solidi, 1966, 15(2): 627-637. | 29 | ABDULLA H S, ABBO A I. Optical and electrical properties of thin films of polyaniline and polypyrrole[J]. International Journal of Electrochemical Science, 2012, 7(2012): 10666-10678. | 30 | SHAFIEE A, SALLEH M M, YAHAYA M. Determination of HOMO and LUMO of [6,6]-phenyl C61-butyric acid 3-ethylthiophene ester and poly(3-octyl-thiophene-2,5-diyl) through voltametry characterization[J]. Sains Malaysiana, 2011, 40(2): 173-176. | 31 | WANG Z, GARTH K, GHASIMI S, et al. Conjugated microporous poly(benzochalcogenadiazole)s for photocatalytic oxidative coupling of amines under visible light[J]. ChemSusChem, 2015, 8(20): 3459-3464. | 32 | KONG P, TAN H, LEI T, et al. Oxygen vacancies confined in conjugated polyimide for promoted visible-light photocatalytic oxidative coupling of amines[J]. Applied Catalysis B: Environmental, 2020, 272: 118964. |
|