Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S1): 1-11.DOI: 10.16085/j.issn.1000-6613.2019-2031
• Chemical processes and equipment • Previous Articles Next Articles
Received:
2019-12-18
Online:
2020-06-29
Published:
2020-05-20
Contact:
Kelong CHEN
通讯作者:
陈珂龙
作者简介:
张旭(1984—),男,工程师,研究方向为高分子材料及功能材料。E-mail: CLC Number:
Xu ZHANG, Kelong CHEN. Research progress of photoinduced reversible deactivation radical polymerization in the presence of alkyliodidie[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 1-11.
张旭, 陈珂龙. 碘代化合物存在下光引发的可逆-休眠自由基聚合研究进展[J]. 化工进展, 2020, 39(S1): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-2031
1 | OTSU T, YOSHIDA M. Role of initiator-transfer agent-terminator (Iniferter) in radical polymerizations-polymer design by organic disulfides as iniferters[J]. Macromolecular Rapid Communications, 1982, 3( 2): 127- 132. |
2 | HAWKER C J, BOSMAN A W, HARTH E. New polymer synthesis by nitroxide mediated living radical polymerization[J]. Chemical Reviews, 2001, 101: 3661- 3688. |
3 | NICOLAS J, GUILLANEUF Y, BERTIN D, et al. Nitroxide-mediated polymerization[J]. Polymer Science, 2013, 38: 63- 235. |
4 | MATYJASZEWSKI K, PATTEN T E, XIA J. Controlled/"living" radical polymerization. kinetics of the homogeneous atom transfer radical polymerization of styrene[J]. Journal of the American Chemistry Society, 1997, 119: 674- 680. |
5 | MATYJASZEWSKI K, XIA J. Atom transfer radical polymerization[J]. Chemical Reviews, 2001, 101: 2921- 2990. |
6 | FAVIER A, M-T CHARREYRE. Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (PAFT) process[J]. Macromolecular Rapid Communications, 2006, 27( 9): 653- 692. |
7 | CHIEFARI J, CHONG Y K B, ERCOLE F, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process[J]. Macromolecules, 1998, 31: 5559- 5562. |
8 | JENKINS A D, JONES R G, MOAD G. Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC recommendations 2010)[J]. Pure and Applied Chemistry, 2009, 82( 2): 483- 491. |
9 | MATYJASZEWSKI K. Controlled radical polymerization: state-of-the-art in 2011[J]. ACS Symposium Series, 2015, 1100: 1- 17. |
10 | CHEN M, MACLEOD M J, JOHNSON J A. Visible-light-controlled living radical polymerization from a trithiocarbonate iniferter mediated by an organic photoredox catalyst[J]. ACS Macro. Letters, 2015, 4( 5): 566- 569. |
11 | PERKOWSKI A J, YOU W, NICEWICZ D A. Visible light photoinitiated metal-free living cationic polymerization of 4-methoxystyrene[J]. Journal of the American Chemister Society, 2015, 137( 24): 7580- 7583. |
12 | WOLPERS A, VANA P. UV light as external switch and boost of molar-mass control in iodine-mediated polymerization[J]. Macromolecules, 2014, 47( 3): 954- 963. |
13 | YOSHIDA E. Effects of initiators and photo-acid generators on nitroxide-mediated photo-living radical polymerization of methyl methacrylate[J]. Colloid and Polymer Science, 2010, 288( 8): 901- 905. |
14 | YOSHIDA E. Nitroxide-mediated photo-living radical polymerization of methyl methacrylate in solution[J]. Colloid and Polymer Science, 2010, 288( 16/17): 1639- 1643. |
15 | DEBUIGNE A, SCHOUMACHER M, WILLET N, et al. New functional poly(N-vinylpyrrolidone) based ( co)polymers via photoinitiated cobalt-mediated radical polymerization[J]. Chem. Commun. (Camb), 2011, 47( 47): 12703- 12705. |
16 | DETREMBLEUR C, D-L VERSACE, PIETTE Y, et al. Synthetic and mechanistic inputs of photochemistry into the bis-acetylacetonatocobalt- mediated radical polymerization of n-butyl acrylate and vinyl acetate[J]. Polymer Chemistry, 2012, 3( 7): 1856- 1866. |
17 | NAKAMURA Y, ARIMA T, TOMITA S, et al. Photoinduced switching from living radical polymerization to a radical coupling reaction mediated by organotellurium compounds[J]. Journal of the American Chemistry Society, 2012, 134( 12): 5536- 5539. |
18 | PAN X, MALHOTRA N, SIMAKOVA A, et al. Photoinduced atom transfer radical polymerization with ppm-level Cu catalyst by visible light in aqueous media[J]. Journal of the American Chemistry Society, 2015, 137( 49): 15430- 15433. |
19 | FU L, WANG Z, LATHWAL S, et al. Synthesis of polymer bioconjugates via photoinduced atom transfer radical polymerization under blue light irradiation[J]. ACS Macro. Letters, 2018, 7( 10): 1248- 1253. |
20 | LEI L, LI F, ZHAO H, et al. One-pot synthesis of block copolymers by ring-opening polymerization and ultraviolet light-induced ATRP at ambient temperature[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2018, 56( 7): 699- 704. |
21 | WANG L, LI R, ZHANG K. Atom transfer radical polymerization (ATRP) catalyzed by visible light-absorbed small molecule organic semiconductors[J]. Macromol. Rapid Commun., 2018, 39( 18): e1800466. |
22 | NI B, WANG D, ZHANG H, et al. Visible light controlled polymerization of azide‐derived monomers: a facile, metal‐free pet‐ATRP route to construct azide polymers[J]. Macromolecular Chemistry and Physics, 2019, 220( 7): 1800529. |
23 | ROLLAND M, WHITFIELD R, MESSMER D, et al. Effect of polymerization components on oxygen-tolerant photo-ATRP[J]. ACS Macro. Letters, 2019, 1546- 1551. |
24 | XU J, JUNG K, ATME A, et al. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance[J]. Journal of the American Chemistry Society, 2014, 136( 14): 5508- 5519. |
25 | XU J, JUNG K, BOYER C. Oxygen tolerance study of photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization mediated by Ru(bpy) 3Cl 2[J]. Macromolecules, 2014, 47( 13): 4217- 4229. |
26 | BOYER C, VALADE D, SAUGUET L, et al. Iodine transfer polymerization (ITP) of vinylidene fluoride (VDF). influence of the defect of VDF chaining on the control of ITP[J]. Macromolecules, 2005, 38( 25): 10353- 10362. |
27 | BOUTEVIN B, FURET Y, HERVAUD Y, et al. Etude de la télomérisation et de la cotélomérisation du fluorure de vinylidéne (VF2). Part I. Cotélomérisation du VF2 avec l′acétate de vinyleetle 2-hydroxyéthylmercaptan[J]. Journal of Fluorine Chemistry, 1994, 69( 1): 11- 18. |
28 | WANG Y A, SHI Y, FU Z F, et al. Hexamethylphosphoramide as a highly reactive catalyst for reversible-deactivation radical polymerization of MMA with in-situ formed alkyl iodide initiator[J]. Polymer Chemistry, 2017, 8: 6073- 6085. |
29 | ASANDEI A D, ADEBOLU O I, SIMPSON C P, et al. Visible-light hypervalent iodide carboxylate photo(trifluoro)methylations and controlled radical polymerization of fluorinated alkenes[J]. Angew. Chem. Int. Ed. Engl., 2013, 52( 38): 10027- 10030. |
30 | GOTO A, SUZUKI T, OHFUJI H, et al. Reversible complexation mediated living radical polymerization (RCMP) using organic catalysts[J]. Macromolecules, 2011, 44( 22): 8709- 8715. |
31 | GOTO A, OHTSUKI A, OHFUJI H, et al. Reversible generation of a carbon-centered radical from alkyl iodide using organic salts and their application as organic catalysts in living radical polymerization[J]. Journal of the American Chemistry Society, 2013, 135( 30): 11131- 11139. |
32 | GOTO A, TANISHIMA M, NAKAJIMA Y, et al. Living radical polymerizations using sodium iodide and potassium iodide as catalysts[J]. Macromolecules, 2015, 1187: 171- 182. |
33 | LEI L, TANISHIMA M, GOTO A, et al. Living radical polymerization via organic superbase catalysis[J]. Polymers, 2014, 6( 3): 860- 872. |
34 | WANG W, BAI L, CHEN H, et al. PMDETA as an efficient catalyst for bulk reversible complexation mediated polymerization (RCMP) in the absence of additional metal salts and deoxygenation[J]. RSC Advances, 2016, 6( 99): 97455- 97462. |
35 | WANG C G, HANINDITA F, GOTO A. Biocompatible choline iodide catalysts for green living radical polymerization of functional polymers[J]. ACS Macro. Letters, 2018, 7( 2): 263- 268. |
36 | OHTSUKI A, GOTO A, KAJI H. Visible-light-induced reversible complexation mediated living radical polymerization of methacrylates with organic catalysts[J]. Macromolecules, 2012, 46( 1): 96- 102. |
37 | TONNAR J, LACROIX-DESMAZES P, BOUTEVIN B. Living radical ab initio emulsion polymerization of n-butyl acrylate by reverse iodine transfer polymerization[J]. ACS Symposium, 2006, 944( 3): 281- 282. |
38 | LACROIX-DESMAZES P, TONNAR J, BOUTEVIN B. Reverse iodine transfer polymerization (RITP) in emulsion[J]. Macromolecular Symposia, 2007, 248( 1): 150- 157. |
39 | GOTO A, NAGASAWA K, SHINJO A, et al. Reversible chain transfer catalyzed polymerization of methyl methacrylate with in-situ formed alkyl iodide initiator[J]. Australian Journal of Chemistry, 2009, 62: 1492- 1495. |
40 | LIU X, XU Q, ZHANG L, et al. Visible-light-induced living radical polymerization using in situ bromine-iodine transformation as an internal boost[J]. Polymer Chemistry, 2017, 8( 16): 2538- 2551. |
41 | XIAO L, SAKAKIBARA K, TSUJII Y, et al. Organocatalyzed living radical polymerization viain situ halogen exchange of alkyl bromides to alkyl iodides[J]. Macromolecules, 2017, 50( 5): 1882- 1891. |
42 | BAI L, ZHANG L, PAN J, et al. Developing a synthetic approach with thermoregulated phase-transfer catalysis: facile access to metal-mediated living radical polymerization of methyl methacrylate in aqueous/organic biphasic system[J]. Macromolecules, 2013, 46( 6): 2060- 2066. |
43 | PAN J, ZHANG L, BAI L, et al. Atom transfer radical polymerization of methyl methacrylate with a thermo-responsive ligand: construction of thermoregulated phase-transfer catalysis in an aqueous-organic biphasic system[J]. Polymer Chemistry, 2013, 4( 9): 2876. |
44 | DU X, PAN J, CHEN M, et al. Thermo-regulated phase separable catalysis (TPSC)-based atom transfer radical polymerization in a thermo-regulated ionic liquid[J]. Chem. Commun. (Camb), 2014, 50( 66): 9266- 9269. |
45 | DING M, JIANG X, PENG J, et al. Diffusion-regulated phase-transfer catalysis for atom transfer radical polymerization of methyl methacrylate in an aqueous/organic biphasic system[J]. Macromolecular Rapid Communications, 2015, 36( 6): 538- 546. |
46 | JIANG X, LIU Y, DING M, et al. AGET ATRP of methyl methacrylate based on thermoregulated phase transfer catalysis in organic/aqueous biphasic system: facile and highly efficient in situ catalyst/ligand separation and recycling[J]. Macromolecular Chemistry and Physics, 2015, 216( 11): 1171- 1179. |
47 | ZHANG B, JIANG X, ZHANG L, et al. Fe(Ⅲ)-mediated ICAR ATRP in a p-xylene/PEG-200 biphasic system: facile and highly efficient separation and recycling of an iron catalyst[J]. Polymer Chemistry, 2015, 6( 37): 6616- 6622. |
48 | MIYAKE G M, THERIOT J C. Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light[J]. Macromolecules, 2014, 47( 23): 8255- 8261. |
49 | TREAT N J, SPRAFKE H, KRAMER J W, et al. Metal-free atom transfer radical polymerization[J]. Journal of the American Chemistry Society, 2014, 136( 45): 16096- 16101. |
50 | OGAWA K A, GOETZ A E, BOYDSTON A J. Metal-free ring-opening metathesis polymerization[J]. Journal of the American Chemistry Society, 2015, 137( 4): 1400- 1403. |
51 | PAN X, LAMSON M, YAN J, et al. Photoinduced metal-free atom transfer radical polymerization of acrylonitrile[J]. ACS Macro. Letters, 2015, 4( 2): 192- 196. |
52 | LIU X D, ZHANG L, CHENG Z P, et al. Catalyst-free iodine-mediated living radical polymerization under irradiation over a wide visible-light spectral scope[J]. Polymer Chemistry, 2016, 7( 21): 3576- 3588. |
53 | LIU X, ZHANG L, CHENG Z, et al. Straightforward catalyst/solvent-free iodine-mediated living radical polymerization of functional monomers driven by visible light irradiation[J]. Chem. Commun. (Camb), 2016, 52( 72): 10850- 10853. |
54 | NI Y, TIAN C, ZHANG L, et al. Photocontrolled iodine-mediated green reversible-deactivation radical polymerization of methacrylates: effect of water in the polymerization system[J]. ACS Macro Letters, 2019, 8( 11): 1419- 1425. |
55 | OHTSUKI A, LEI L, TANISHIMA M, et al. Photocontrolled organocatalyzed living radical polymerization feasible over a wide range of wavelengths[J]. Journal of American Chemistry Society, 2015, 137( 16): 5610- 5617. |
56 | BARKER I A, DOVE A P. Triarylsulfonium hexafluorophosphate salts as photoactivated acidic catalysts for ring-opening polymerisation[J]. Chem. Commun. (Camb), 2013, 49( 12): 1205- 1207. |
57 | RUBIO A, DESNOS G, SEMSARILAR M. Nanostructured membranes from soft and hard nanoparticles prepared via RAFT-mediated PISA[J]. Macromolecular Chemistry and Physics, 2018, 219( 20): 1800351. |
58 | COUTURAUD B, GEORGIOU P G, VARLAS S, et al. Poly(pentafluorophenyl methacrylate)-based nano-objects developed by photo-PISA as scaffolds for post-polymerization functionalization[J]. Macromol Rapid Commun, 2019, 40( 2): e1800460. |
59 | MELLOT G, BEAUNIER P, GUIGNER J M, et al. Beyond simple ab diblock copolymers: application of bifunctional and trifunctional RAFT agents to PISA in water[J]. Macromol. Rapid Commun., 2019, 40( 2): e1800315. |
60 | YAO X, PENG R, DING J. Cell-material interactions revealed via material techniques of surface patterning[J]. Adv. Mater., 2013, 25( 37): 5257- 5286. |
61 | DURAND N, AMEDURI B, BOUTEVIN B. Synthesis and characterization of functional fluorinated telomers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49( 1): 82- 92. |
62 | WANG C G, CHEN C, SAKAKIBARA K, et al. Facile fabrication of concentrated polymer brushes with complex patterning by photocontrolled organocatalyzed living radical polymerization[J]. Angew. Chem. Int. Ed. Engl., 2018, 57( 41): 13504- 13508. |
63 | SARKAR J, XIAO L, JACKSON A W, et al. Synthesis of transition-metal-free and sulfur-free nanoparticles and nanocapsules via reversible complexation mediated polymerization (RCMP) and polymerization induced self-assembly (PISA)[J]. Polymer Chemistry, 2018, 9( 39): 4900- 4907. |
64 | WANG G, SCHMITT M, WANG Z, et al. Polymerization-induced self-assembly (PISA) using ICAR ATRP at low catalyst concentration[J]. Macromolecules, 2016, 49( 22): 8605- 8615. |
65 | WANG G, WANG Z, LEE B, et al. Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP[J]. Polymer, 2017, 129: 57- 67. |
66 | CAO M, ZHANG Y, WANG J, et al. ICAR ATRP polymerization-induced self-assembly using a mixture of macroinitiator/stabilizer with different molecular weights[J]. Macromol. Rapid Commun., 2019, 40( 20): e1900296. |
67 | CHEN L, LI P, LU X, et al. Binary polymer brush patterns from facile initiator stickiness for cell culturing[J]. Faraday Discuss, 2019, 219: 189- 202. |
68 | WANG J, WU Z, WANG G, et al. In situ crosslinking of nanoparticles in polymerization-induced self-assembly via arget ATRP of glycidyl methacrylate[J]. Macromol. Rapid Commun., 2019, 40( 2): e1800332. |
69 | XU Q, TIAN C, ZHANG L, et al. Photo-controlled polymerization-induced self-assembly (Photo-PISA): a novel strategy using in situ bromine-iodine transformation living radical polymerization[J]. Macromol. Rapid Commun., 2019, 40( 2): e1800327. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[3] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[4] | LU Jianmei. Recent research progress of flexible adsorption materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2781-2798. |
[5] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[6] | LYU Xuedong, LUO Faliang, LIN Haitao, SONG Danqing, LIU Yi, NIU Ruixue, ZHENG Liuchun. Recent progress of synthesis technology and gas barrier research of poly(butylene succinate) [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2546-2554. |
[7] | PANG Nanjiong, WANG Xiaoling, LIAO Xuepin, SHI Bi. Separation of boron isotopes by collagen fibers-immobilized black wattle tannin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2616-2625. |
[8] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[9] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
[10] | SHANG Xiaobiao, LI Guangchao, XIAO Liping, BAI Yongzhen, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Wave transmission performance of zirconium aluminum silicate fiberboard under large temperature gradient [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1551-1561. |
[11] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[12] | HUANG Wei, CHU Zheng, REN Lei, LI Shan. Application of carbon-based solid acid in hydrogenation of nitrobenzene to p-aminophenol [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 272-281. |
[13] | TENG Xinyu, ZHANG Guohua, HU Chenshu, ZHU Cheng, YU Dan, LIU Di, LIU Sha. Analysis on hydrogen energy economy and low cost of hydrogen source in typical cities of China [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6295-6301. |
[14] | WAN Nianfang. Research progress of membrane electrode assembly of proton exchange membrane water electrolysis for hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6385-6394. |
[15] | CHEN Yu, WANG Jiajia, TANG Lin. Preparation and performance of floating carbon nitride photocatalyst CNx@mEP [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6477-6488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |