Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (4): 1363-1370.DOI: 10.16085/j.issn.1000-6613.2019-1121
• Industrial catalysis • Previous Articles Next Articles
Xuesong LIU1,2(),Lan WANG1(),Jingrui FANG1,Hongfeng CHEN3,Chi PAN2
Received:
2019-07-15
Online:
2020-04-28
Published:
2020-04-05
Contact:
Lan WANG
通讯作者:
汪澜
作者简介:
刘雪松(1983—),男,副教授,硕士生导师,研究方向为环境催化。E-mail:基金资助:
CLC Number:
Xuesong LIU,Lan WANG,Jingrui FANG,Hongfeng CHEN,Chi PAN. Synergistic effects of hydrothermal aging and tungsten addition on the high-temperature SCR performance of low vanadium catalysts[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1363-1370.
刘雪松,汪澜,房晶瑞,陈洪锋,潘驰. 水热处理和钨添加对低钒催化剂高温脱硝性能的影响[J]. 化工进展, 2020, 39(4): 1363-1370.
催化剂 | 晶粒 尺寸/nm | 晶胞体积 /nm3 | 比表面积 /m2·g-1 | 平均 孔径/nm | 孔容 /cm3·g-1 |
---|---|---|---|---|---|
VTi | 19.4 | 0.1352 | 61.24 | 22.5 | 0.33 |
VTi-A | 31.7 | 0.1337 | 29.56 | 44.1 | 0.21 |
VWTi | 19.9 | 0.1351 | 67.53 | 18.3 | 0.34 |
VWTi-A | 21.7 | 0.1353 | 59.15 | 27.4 | 0.29 |
催化剂 | 晶粒 尺寸/nm | 晶胞体积 /nm3 | 比表面积 /m2·g-1 | 平均 孔径/nm | 孔容 /cm3·g-1 |
---|---|---|---|---|---|
VTi | 19.4 | 0.1352 | 61.24 | 22.5 | 0.33 |
VTi-A | 31.7 | 0.1337 | 29.56 | 44.1 | 0.21 |
VWTi | 19.9 | 0.1351 | 67.53 | 18.3 | 0.34 |
VWTi-A | 21.7 | 0.1353 | 59.15 | 27.4 | 0.29 |
催化剂 | 结合能/eV | 表面原子浓度比/% | |||
---|---|---|---|---|---|
V5+ | V4+ | V3+ | (V4++V3+)/(V5++V4++V3+) | Oα/(Oα+Oβ) | |
VTi | 517.3 | 516.4 | — | 58.18 | 25.28 |
VTi-A | 517.4 | 516.8 | 516.1 | 72.68 | 12.85 |
VWTi | 517.2 | 516.3 | — | 62.38 | 20.05 |
VWTi-A | 517.2 | 516.5 | 515.5 | 80.85 | 11.81 |
催化剂 | 结合能/eV | 表面原子浓度比/% | |||
---|---|---|---|---|---|
V5+ | V4+ | V3+ | (V4++V3+)/(V5++V4++V3+) | Oα/(Oα+Oβ) | |
VTi | 517.3 | 516.4 | — | 58.18 | 25.28 |
VTi-A | 517.4 | 516.8 | 516.1 | 72.68 | 12.85 |
VWTi | 517.2 | 516.3 | — | 62.38 | 20.05 |
VWTi-A | 517.2 | 516.5 | 515.5 | 80.85 | 11.81 |
1 | YAO M Y, NIE J P, ZHANG L X, et al. Integrative flue-gas pollutants removal technology for coal-fired utility boilers[J]. Thermal Power Generation, 2016, 45(3): 8-12. |
2 | JOHNSON T V. Vehicular emissions in review[J]. SAE International Journal of Engines, 2016, 9(2): 1259-1275. |
3 | BEALE A M, GAO F, LEZCANO-GONZALEZ I, et al. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J]. Chemical Society Reviews, 2015, 44(20): 7371-7405. |
4 | WANG J H, ZHAO H W, HALLER G, et al. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts[J]. Applied Catalysis B: Environmental, 2017, 202: 346-354. |
5 | JANSSEN F, MEIJER R. Quality control of deNOx catalysts: performance testing, surface analysis and characterization of deNOx catalysts[J]. Catalysis Today, 1993, 16(2): 157-158. |
6 | LIU X S, WU X D, XU T F, et al. Effects of silica additive on the SCR activity and thermal stability of a V2O5/WO3-TiO2 catalysts[J]. Chinese Journal of Catalysis, 2016, 37(8): 1340-1346. |
7 | ZHANG S L, ZHONG Q. Promotional effect of WO3- on O2- over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Journal of Molecular Catalysis A: Chemical, 2013, 373: 108-113. |
8 | MADIA G, ELSENER M, KOEBEL M, et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process[J]. Applied Catalysis B: Environmental, 2002, 39(2): 181-190. |
9 | KOMPIO P G, BRÜCHNER A, HIPLER F, et al. V2O5/WO3-TiO2 catalysts under thermal stress: responses of structure and catalytic behavior in the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental, 2017, 217(1): 365-377. |
10 | 刘庆航, 晏乃强, 翟赞, 等. 溴掺杂钒钛催化剂SCR反应动力学研究[J]. 高等化学工程学报, 2017, 31(5): 1193-1200. |
LIU Q H, YE N Q, ZHAI Z, et al. Kinetic study on selective catalytic reduction of NOx by Br-doped V2O5/TiO2 catalysts[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(5): 1193-1200. | |
11 | LIU X S, WU X D, WENG D, et al. Evolution of copper species on Cu/SAPO-34 SCR catalysts upon hydrothermal aging[J]. Catalysis Today, 2017, 281: 596-604. |
12 | 张道军, 马子然, 孙琦, 等. 选择催化还原(SCR)反应机理研究进展[J]. 化工进展, 2019, 38(4): 1611-1623. |
ZHANG D J, MA Z R, SUN Q, et al. Progress in the mechanism of selective catalytic reduction (SCR) reaction[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1611-1623. | |
13 | SHEN M Q, LI C X, WANG J Q, et al. New insight into the promotion effect of Cu doped V2O5/WO3-TiO2 for low temperature NH3-SCR performance[J]. RSC Advances, 2015, 5(44): 35155-35165. |
14 | RASMUSSEN S B, ABRAMS B L. Fundamental chemistry of V-SCR catalysts at elevated temperatures[J]. Catalysis Today, 2017, 297: 60-63. |
15 | ZONG L Y, DONG F, ZHANG G D, et al. Highly efficient mesoporous V2O5/WO3-TiO2 catalyst for selective catalytic reduction of NOx: effect of the valence of V on the catalytic performance[J]. Catalysis Surveys from Asia, 2017, 21(3): 103-113. |
16 | YANG N Z, GUO R T, PAN W G, et al. The promotion effect of Sb on the Na resistance of Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. Fuel, 2016, 169: 87-92. |
17 | XU H D, WANG Y, GAO Y, et al. Catalytic performance of acidic zirconium-based composite oxides monolithic catalyst on selective catalytic reduction of NOx with NH3[J]. Chemical Engineering Journal, 2014, 240: 62-73. |
18 | PUTLURU S S R, SCHILL L, GARDINI D, et al. Superior deNOx activity of V2O5-WO3/TiO2 catalysts prepared by deposition-precipitation method[J]. Journal of Materials Science, 2014, 49(7): 2705-2713. |
19 | WENT G T, LEU L J, ROSIN R R, et al. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3[J]. Journal of Catalysis, 1992, 134(2): 492-505. |
20 | WANG C Z, YANG S J, CHANG H Z, et al. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: acidity, surface species and catalytic activity[J]. Chemical Engineering Journal, 2013, 225: 520-527. |
21 | PUTLURU S S R, SCHILL L, GODIKSEN A, et al. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 2016, 183(7): 282-290. |
22 | YU W C, WU X D, SI Z C, et al. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5/WO3-TiO2 catalyst[J]. Applied Surface Science, 2013, 283: 209-214. |
23 | AGUILAR-ROMERO M, CAMPOSECO R, CASTILLO S, et al. Acidity, surface species, and catalytic activity study on V2O5-WO3/TiO2 nanotube catalysts for selective NO reduction by NH3[J]. Fuel, 2017, 178:123-133. |
24 | SHEN H Z, IE I R, YUAN C S, et al. Removal of elemental mercury by TiO2 doped with WO3 and V2O5 for their photo- and thermo-catalytic removal mechanisms[J]. Environmental Science & Pollution Research International, 2016, 23(6): 5839-5852. |
25 | LI F K, SHEN B X, TIAN L H, et al. Enhancement of SCR activity and mechanism stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica[J]. Powder Technology, 2016, 297: 384-391. |
26 | REN F Z, LI HY, WANG Y X, et al. Enhanced photocatalytic oxidation of propylene over V-doped TiO2 photocatalyst: reaction mechanism between V5+ and single-electron-trapped oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 176/177: 160-172. |
27 | XU L W, WANG C Z, CHANG H Z, et al. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environmental Science & Technology, 2018, 52(12): 7064-7071. |
28 | ZHOU A Y, YU D Q, YANG L, et al. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping[J]. Applied Surface Science, 2016, 378: 167-173. |
29 | CHEN Q L, GUO R T, WANG Q S, et al. The catalytic performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH3[J]. Fuel, 2016, 181: 852-858. |
30 | LI Y, ZHONG Q. The characterization and acivity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Journal of Hazardous materials, 2009, 172(2): 635-640. |
31 | SHI A J, WANG X Q, YU T, et al. The effect of zirconia additive on the activity and structure stability of V2O5/WO3-TiO2 ammonia SCR catalysts[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 359-369. |
32 | BOND G C. Preparation and properties of vanadia/titania monolayer catalysts[J]. Applied Catalysis A: General, 1995, 126(2): 365-380. |
33 | WACHS I E, ROBERTS C A. Monitoring surface metal oxide catalytic active site with Raman spectroscopy[J]. Chemical Society Reviews, 2010, 39(2): 5002-5017. |
34 | WENT G T, LEU L J, ROSIN R R, et al. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3[J]. Journal of Catalysis, 1992, 134: 492-505. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 531
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |