Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (2): 584-595.DOI: 10.16085/j.issn.1000-6613.2019-0798
• Materials science and technology • Previous Articles Next Articles
Heqing TIAN(),Junjie ZHOU,Chaxiu GUO
Received:
2019-05-16
Online:
2020-03-12
Published:
2020-02-05
Contact:
Heqing TIAN
通讯作者:
田禾青
作者简介:
田禾青(1987—),男,讲师,研究方向为储能材料。E-mail:基金资助:
CLC Number:
Heqing TIAN,Junjie ZHOU,Chaxiu GUO. Progress of specific heat enhancement of molten salt thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 584-595.
田禾青,周俊杰,郭茶秀. 熔盐储热材料比热容强化的研究进展[J]. 化工进展, 2020, 39(2): 584-595.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0798
1 | 何雅玲. 工业余热高效综合利用的重大共性基础问题研究[J]. 科学通报, 2016, 61(17): 1856-1857. |
HE Y L. Study on the major common problems of industrial waste heat efficient comprehensive utilization[J]. Chinese Science Bulletin, 2016, 61(17): 1856-1857. | |
2 | MEDRANO M, GIL A, MARTORELL I, et al. State of the art on high-temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization[J]. Renewable & Sustainable Energy Reviews, 2010, 14(1): 56-72. |
3 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable & Sustainable Energy Reviews, 2010, 14(3): 955-970. |
4 | DUNN R I, HEARPS P J, WRIGHT M N. Molten-salt power towers: newly commercial concentrating solar storage[J]. Proceedings of the IEEE, 2012, 100(2): 504-515. |
5 | KURAVI S, TRAHAN J, GOSWAMI D Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Progress in Energy & Combustion Science, 2013, 39(4): 285-319. |
6 | VIGNAROOBAN K, XU X, ARVAY A, et al. Heat transfer fluids for concentrating solar power systems-a review[J]. Applied Energy, 2015, 146: 383-396. |
7 | BUCK R, PACHECO J E. An update on solar central receiver systems, projects, and technologies[J]. Journal of Solar Energy Engineering, 2002, 124(2): 98-108. |
8 | STARACE A K, GOMEZ J C, GLATZMAIER G C. Can particle-stabilized inorganic dispersions be high-temperature heat-transfer and thermal energy storage fluids?[J]. Journal of Materials Science, 2013, 48(11): 4023-4031. |
9 | ARTHUR O, KARIM M. An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 739-755. |
10 | ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. |
11 | PERRY R H, GREEN D W. Perry’s chemical engineers’ handbook[M]. New York: McGraw-Hill Professional, 1999. |
12 | ZHANG H, BAEYENS J, CACERES G, et al. Thermal energy storage: recent developments and practical aspects[J]. Progress in Energy and Combustion Science, 2016, 53: 1-40. |
13 | AN X, CHENG J, ZHANG P, et al. Determination and evaluation of the thermophysical properties of an alkali carbonate eutectic molten salt[J]. Faraday Discussions, 2016, 190: 327-338. |
14 | 林璟, 方利国. 纳米流体强化传热技术及其应用新进展[J]. 化工进展, 2008, 27(4): 488-494. |
LIN J, FANG L G. Recent progress of technology and application of heat transfer enhancement of nanofuilds[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 488-494. | |
15 | PENG Q, DING J, WEI X, et al. The preparation and properties of multi-component molten salts[J]. Applied Energy, 2010, 87(9): 2812-2817. |
16 | WU Y T, LI Y, REN N, et al. Improving the thermal properties of NaNO3-KNO3, for concentrating solar power by adding additives[J]. Solar Energy Materials & Solar Cells, 2017, 160: 263-268. |
17 | 阴慧琴. 腐蚀产物CrF3对LiF-NaF-KF熔盐物化性质的影响研究[D]. 上海: 中国科学院研究生院, 2015. |
YIN H Q. The effect study of corrosion product CrF3 on physico-chemical properties of LiF-NaF-KF[D]. Shanghai: The University of Chinese Academy of Sciences, 2015. | |
18 | 杜威. 碳酸盐-氟盐高温熔盐的性能研究[D]. 沈阳: 东北大学, 2013. |
DU W. Study on properties of carbonate-fluoride high temperature molten salt[D]. Shenyang: Northeastern University, 2013. | |
19 | CHOL S. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME-Publications-Fed, 1995, 231: 99-106. |
20 | 冯黛丽. 金属纳米基元及其复合体的相变热特性[D]. 北京: 北京科技大学, 2015. |
FENG D L. Phase change thermal properties of metallic nano units and their composites[D]. Beijing: University of Science and Technology Beijing, 2015. | |
21 | SHIN D, BANERJEE D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of Heat Transfer, 2013, 135(3): 032801. |
22 | MURSHED S M S, DE CASTRO C A N, LOURENCO M J V, et al. Current research and future applications of nano-and ionano-fluids[J]. Journal of Physics: Conference Series, 2012, 395: 012117. |
23 | SHIN D, BANERJEE D. Effects of silica nanoparticles on enhancing eutectic carbonate salt specific heat (work in progress)[J]. International Journal of Structural Changes in Solids, 2010, 2: 25-31. |
24 | SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat & Mass Transfer, 2011, 54(5/6): 1064-1070. |
25 | HANI T, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat & Mass Transfer, 2013, 57(2): 542-548. |
26 | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials & Solar Cells, 2017, 167: 60-69. |
27 | CHEN X, WU Y T, ZHANG L D, et al. Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials & Solar Cells, 2018, 176: 42-48. |
28 | CHEN X, WU Y T, ZHANG L D, et al. Experimental study on thermophysical properties of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials & Solar Cells, 2019, 191: 209-217. |
29 | TIAN H, DU L, HUANG C, et al. Enhanced specific heat capacity of binary chloride salt by dissolving magnesium for high-temperature thermal energy storage and transfer[J]. Journal of Materials Chemistry A, 2017, 5(28): 14811-14818. |
30 | HUANG Y, CHENG X M, LI Y Y, et al. Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3-KNO3[J]. Solar Energy, 2018, 160: 208-215. |
31 | MATHIEU L, GRAHAM S, MUHAMMAD A, et al. In situ production of copper oxide nanoparticles in a binary molten salt for concentrated solar power plant applications[J]. Materials, 2017, 10(5): 537-546. |
32 | LASFARGUES M, BELL A, DING Y. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications[J]. Journal of Nanoparticle Research, 2016, 18(6): 150. |
33 | HUANG Y, CHENG X M, LI Y Y, et al. Effect of sol-gel combustion synthesis of nanoparticles on thermal properties of KNO3-NaNO3[J]. Solar Energy Materials & Solar Cells, 2018, 188: 190-201. |
34 | TIZNOBAIK H, SHIN D. Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial[J]. Applied Physics Letters, 2013, 102(17): 173906. |
35 | TIZNOBAIK H, BANERJEE D, SHIN D. Effect of formation of “long range” secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2015, 91: 342-346. |
36 | SHIN D, BANERJEE D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat & Mass Transfer, 2015, 84: 898-902. |
37 | SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2): 216-226. |
38 | ZHANG Z, YUAN Y, OUYANG L, et al. Enhanced thermal properties of Li2CO3-Na2CO3-K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(3): 1783-1792. |
39 | BHARATH D, SHIN D. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69(7): 37-42. |
40 | DEVARADJANE R, SHIN D. Nanoparticle dispersions on ternary nitrate salts for heat transfer fluid applications in solar thermal power[J]. Journal of Heat Transfer, 2016, 138(5): 051901. |
41 | SEO J, SHIN D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3-NaNO3-KNO3) salt eutectic for thermal energy storage[J]. Applied Thermal Engineering, 2016, 102: 144-148. |
42 | 张璐迪, 吴玉庭, 任楠, 等. 纳米粒子的分散对提高LMPS盐比热容的影响[J]. 太阳能学报, 2017, 38(11): 3018-3021. |
ZHANG L D, WU Y T, REN N, et al. Effects of nanoparticle dispersion on enhancing specific heat capacity of LMPS salt[J]. Acta Energiae Solaris Sinica, 2017, 38(11): 3018-3021. | |
43 | ZHANG L D, CHEN X, WU Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials & Solar Cells, 2016, 157: 808-813. |
44 | SHIN D, BANERJEE D. Specific heat of nanofluids synthesized by dispersing alumina nanoparticles in alkali salt eutectic[J]. International Journal of Heat & Mass Transfer, 2014, 74(5): 210-214. |
45 | HO M X, PAN C. Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2014, 70: 174-184. |
46 | AWAD A, BURNS A, WALEED M, et al. Latent and sensible energy storage enhancement of nano-nitrate molten salt[J]. Solar Energy, 2018, 172: 191-197. |
47 | AWAD A, NAVARRO H, DING Y, et al. Thermal-physical properties of nanoparticle-seeded nitrate molten salts[J]. Renewable Energy, 120: 275-288. |
48 | JO B, BANERJEE D. Enhanced specific heat capacity of molten salt-based nanomaterials: effects of nanoparticle dispersion and solvent material[J]. Acta Materialia, 2014, 75(9): 80-91. |
49 | JO B, BANERJEE D. Effect of solvent on specific heat capacity enhancement of binary molten salt-based carbon nanotube nanomaterials for thermal energy storage[J]. International Journal of Thermal Sciences, 2015, 98: 219-227. |
50 | TAO Y B, LIN C H, HE Y L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Conversion and Management, 2015, 97: 103-110. |
51 | JIANG Z, PALACIOS A, LEI X, et al. Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) system[J]. Applied Energy, 2019, 235: 529-542. |
52 | WANG L, TAN Z, MENG S, et al. Enhancement of molar heat capacity of nanostructured Al2O3[J]. Journal of Nanoparticle Research, 2001, 3(5/6): 483-487. |
53 | XUE L, KEBLINSKI P, PHILLPOT S R, et al. Effect of liquid layering at the liquid-solid interface on thermal transport[J]. International Journal of Heat & Mass Transfer, 2004, 47(19): 4277-4284. |
54 | JUNG S, JO B, SHIN D, et al. Experimental validation of a simple analytical model for specific heat capacity of aqueous nanofluids[R]. SAETechnical Paper, 2010. |
55 | QIAO G, LASFARGUES M, ALESSIO A, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522. |
56 | QIAO G, ALESSIO A, DING Y. Simulation study of anomalous thermal properties of molten nitrate salt[J]. Powder Technology, 2017, 314: 660-664. |
57 | HU Y, HE Y, ZHANG Z, et al. Effect of Al2O3, nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications[J]. Energy Conversion & Management, 2017, 142: 366-373. |
58 | HU Y, HE Y, ZHANG Z, et al. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage[J]. Solar Energy Materials & Solar Cells, 2019, 192: 94-102. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[3] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[4] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[5] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[6] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[7] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[8] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
[9] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[10] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[11] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[12] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[13] | HE Yangdong, CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280. |
[14] | YU Zhiguo. Intelligent control system of district heating based on fixed structure phase change heat storage module [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 168-176. |
[15] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |