Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (3): 1012-1020.DOI: 10.16085/j.issn.1000-6613.2019-0630
• Industrial catalysis • Previous Articles Next Articles
Shanshan HE(),Yuanquan XIONG(),Siyuan YANG,Yangyang GAI
Received:
2019-04-21
Online:
2020-04-03
Published:
2020-03-05
Contact:
Yuanquan XIONG
通讯作者:
熊源泉
作者简介:
何珊珊(1995—),女,硕士研究生,研究方向为烟气脱硫脱硝。E-mail:基金资助:
CLC Number:
Shanshan HE,Yuanquan XIONG,Siyuan YANG,Yangyang GAI. Low-temperature flue gas denitration by H2O2 vapor over α-FeOOH[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1012-1020.
何珊珊,熊源泉,杨思源,盖洋洋. 基于α-FeOOH催化H2O2蒸气的低温烟气脱硝实验[J]. 化工进展, 2020, 39(3): 1012-1020.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0630
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
反应前 | 60.346 | 0.226 | 14.98 |
反应后 | 51.96 | 0.1844 | 14.194 |
催化剂 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
反应前 | 60.346 | 0.226 | 14.98 |
反应后 | 51.96 | 0.1844 | 14.194 |
1 | 钱伯章,李敏.能源结构随能源需求增长而持续多样化——2018年世界能源统计年鉴解读[J].中国石油和化工经济分析,2018 (8):51-54. |
QIAN B Z,LI M.Energy structure continues to diversify as energy demand grows—Interpretation of the 2018 world energy statistics yearbook[J].Economic Analysis of China Petroleum and Chemical Industry,2018 (8):51-54. | |
2 | WU B,XIONG Y Q,RU J B,et al.Removal of NO from flue gas using heat-activated ammonium persulfate aqueous solution in a bubbling reactor[J].RSC Advances,2016,6(40):33919-33930. |
3 | 温学友,赵毅.Fenton反应在燃煤烟气脱硝处理中的应用[J].华北电力大学学报,2018,45(3):95-100. |
WEN X Y,ZHAO Y.Application of Fenton reaction in coal-fired flue gas denitration[J].Journal of North China Electric Power University,2018,45(3):95-100. | |
4 | WANG Z H,ZHOU J H,ZHU Y Q,et al.Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results[J].Fuel Processing Technology,2007,88(8):817-823. |
5 | WU B,XIONG Y Q.A novel low-temperature NO removal approach with ·OH from catalytic decomposition of H2O2 over La1-xCaxFeO3 oxides[J].Journal of Chemical Technology and Biotechnology,2018,93(1):43-53. |
6 | LIU Y X,PAN J F,TANG A K,et al.A study on mass transfer-reaction kinetics of NO absorption by using UV/H2O2/NaOH process[J].Fuel,2013,108:254-260. |
7 | LIU Y X,PAN J F,ZHANG J,et al.Investigation on the removal of NO from SO2-containing simulated flue gas by an ultraviolet/Fenton-like reaction[J].Energy and Fuels,2012,26(9):5430-5436. |
8 | LIU Y X,ZHANG J,WANG Z L.A study on kinetics of NO absorption from flue gas by using UV/Fenton wet scrubbing[J].Chemical Engineering Journal,2012,197:468-474. |
9 | LIU Y X,ZHANG J,SHENG C D,et al.Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process[J].Chemical Engineering Journal,2010,162(3):1006-1011. |
10 | LOUSADA C M,JONSSON M.Kinetics, mechanism, and activation energy of H2O2decomposition on the surface of ZrO2[J].Journal of Physical Chemistry C,2010,114(25):11202-11208. |
11 | PHAM A L T,LEE C,DOYLE F M,et al.A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values[J].Environmental Science and Technology,2009,43(23):8930-8935. |
12 | DING J,ZHONG Q,ZHANG S,et al.Simultaneous removal of NOxand SO2from coal-fired flue gas by catalytic oxidation removal process with H2O2[J].Chemical Engineering Journal,2014,243:176-182. |
13 | HUANG X M,DING J,ZHONG Q.Catalytic decomposition of H2O2 over Fe-based catalysts for simultaneous removal of NOx and SO2[J].Applied Surface Science,2015,326:66-72. |
14 | WU B,XIONG Y Q,GE Y Y.Simultaneous removal of SO2 and NO from flue gas with ·OH from the catalytic decomposition of gas-phase H2O2 over solid-phase Fe2(SO4)3[J].Chemical Engineering Journal,2018,331:343-354. |
15 | WU B,XIONG Y Q,RU J B,et al.Enhancement of NO absorption in ammonium-based solution using heterogeneous Fenton reaction at low H2O2consumption[J].Korean Journal of Chemical Engineering,2016,33(12):3407-3416. |
16 | WU B,ZHANG S P,HE S S,et al.Follow-up mechanism study on NO oxidation with vaporized H2O2 catalyzed by Fe2O3 in a fixed-bed reactor[J].Chemical Engineering Journal,2019,356:662-672. |
17 | 邹雪华,陈天虎,刘海波,等.热处理针铁矿的结构与色度演化[J].硅酸盐学报,2013,41(5):669-673. |
ZHOU X H,CHEN T H,LIU H B,et al.Structural and chromatic evolution of goethite by thermal treatment[J].Joural of the Chinese Ceramic Society,2013,41(5):669-673. | |
18 | 许俊鸽,李云琴,苑宝玲,等.三维花状结构α-FeOOH协同H2O2可见光催化降解双氯芬酸钠[J].环境科学,2015,36(6):2122-2128. |
XU J G,LI Y Q,YUAN B L,et al.Catalytic degradation of diclofenac sodium over the catalyst of 3D flower-like α-FeOOH synergized with H2O2 under visible light irradiation[J].Environmental Science,2015,36(6):2122-2128. | |
19 | ZHANG T,LI C J,MA J,et al.Surface hydroxyl groups of synthetic α-FeOOH in promoting ·OH generation from aqueous ozone: property and activity relationship[J].Applied Catalysis B: Environmental,2008,82(1/2):131-137. |
20 | WU H H,OU X W,DENG D Y,et al.Decolourization of the azo dye Orange G in aqueous solutionvia a heterogeneous Fenton-like reaction catalysed by goethite[J].Environmental Technology,2012,33(14):1545-1552. |
21 | SUI M H,SHENG L,LU K X,et al.FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity[J].Applied Catalysis B: Environmental,2010,96(1/2):94-100. |
22 | GUO L N,ZHONG Q,DING J,et al.Low-temperature NOx (x=1, 2) removal with ·OH radicals from catalytic ozonation over α-FeOOH[J].Ozone: Science and Engineering,2016,38(5):382-394. |
23 | 林志荣,赵玲,董元华,等.针铁矿催化过氧化氢降解PCB28[J].环境科学学报,2011,31(11):2043-2048. |
LIN Z R,ZHAO L,DONG Y H,et al.Degradation of PCB28 by goethite-catalyzed hydrogen peroxide[J].Acta Scientiae Circumstantiae,2011,31(11):2043-2048. | |
24 | YANG S Y,XIONG Y Q,GE Y Y,et al.Heterogeneous Fenton oxidation of nitric oxide by magnetite: kinetics and mechanism[J].Materials Letters,2018,218:257-261. |
25 | QIAN X,HE P,CHEN J,et al.Fabrication of FeOOH/BiOCl nanocomposites with enhanced visible light photocatalytic activity[J].Journal of Inorganic and General Chemistry,2019,645:906-909. |
26 | LI K,LIU X,ZHENG T,et al.Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors[J].Chemical Engineering Journal,2019,370:136-147. |
27 | HUANG Y,GAO Y,ZHANG Q,et al.Biocompatible FeOOH-carbon quantum dots nanocomposites for gaseous NOx removal under visible light: improved charge separation and high selectivity[J].Journal of Hazardous Materials,2018,354:54-62. |
28 | WEI C Z,QIAO P H,NAN Z D.Size-controlled synthesis of rod-like α-FeOOH nanostructure[J].Materials Science and Engineering C,2012,32(6):1524-1530. |
29 | 朱佳裔.FeOOH/H2O2去除水中对氯硝基苯的研究[D].哈尔滨:哈尔滨工业大学,2011. |
ZHU J Y.Study on removal of parachloronitrobenzene in water by FeOOH/H2O2 system[D].Harbin:Harbin Institute of Technology,2011. | |
30 | LI Z C,GUAN M Y,LOU Z S,et al.Facile hydrothermal synthesis and electrochemical properties of flowerlike α-FeOOH[J].Micro & Nano Letter,2012,7(1):33-36. |
31 | LI Z C,CHEN S S,GU A J,et al.Facile hydrothermal synthesis and electrochemical properties of hollow urchin-like α-FeOOH[J].Micro & Nano Letter2012,7(8):757-761. |
32 | OU P,XU G,REN Z H,et al.Hydrothermal synthesis and characterization of uniform α-FeOOH nanowires in high yield[J].Materials Letters,2008,62(3):914-917. |
33 | GENG F X,ZHAO Z G,GENG J X,et al.A simple and low-temperature hydrothermal route for the synthesis of tubular α-FeOOH[J].Materials Letters,2007,61(3):4794-4796. |
34 | 盖洋洋,吴波,熊源泉,等.基于凹凸棒土催化双氧水分解的低温燃煤烟气脱硝[J].化工进展,2018,37(4):1608-1615. |
GAI Y Y,WU B,XIONG Y Q,et al.Experimental study of low-temperature flue gas denitrification based on H2O2 decomposition attapulgite catalyst[J].Chemical Industry and Eenineering Progress,2018,37(4):1608-1615. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[14] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |