Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3097-3110.DOI: 10.16085/j.issn.1000-6613.2018-2347
• Energy processes and technology • Previous Articles Next Articles
Ning SHI1(),Wenyong TANG2,Shiyun TANG1,Wujie GE1,Yunhua LIU1,Lunchang HUANG1
Received:
2018-12-03
Online:
2019-07-05
Published:
2019-07-05
石宁1(),唐文勇2,唐石云1,葛武杰1,刘云花1,黄伦昌1
作者简介:
信作者:石宁(1987—),男,博士,副教授,研究方向为生物质资源高值化利用。E-mail:<email>shining@git.edu.cn</email>。
基金资助:
CLC Number:
Ning SHI, Wenyong TANG, Shiyun TANG, Wujie GE, Yunhua LIU, Lunchang HUANG. Advances in the catalytic conversion of lignocellulosic derived platform chemicals into liquid alkanes[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3097-3110.
石宁, 唐文勇, 唐石云, 葛武杰, 刘云花, 黄伦昌. 木质纤维素衍生平台化学品制备液态烷烃的研究进展[J]. 化工进展, 2019, 38(07): 3097-3110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2347
1 | DE S, SAHAB, LUQUER. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels[J]. Bioresoure Technology, 2015, 178: 108-118. |
2 | BOHREA, DUTTAS, SAHAB, et al. Upgrading furfurals to drop-in biofuels: an overview[J]. ACS Sustainable Chemistry & Engineering, 2015, 3: 1263-1277. |
3 | HUBERG W, DUMESICJ A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catalysis Today, 2006, 111(1/2): 119-132. |
4 | CHHEDAJ N, HUBERG W, DUMESICJ A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angewandte Chemie: International Edition, 2007, 46(38): 7164-7183. |
5 | KUNKESE L, SIMONETTID A, WESTR M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421. |
6 | HANJ, SEN S M, ALONSOD M, et al. A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels[J]. Green Chemistry, 2014, 16: 653-661. |
7 | BOZELLJ J. Connecting biomass and petroleum processing with a chemical bridge[J]. Science, 2010, 329(5991): 522-523. |
8 | DUMESICJ A, HUBERG W, CHHEDAJ N, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450. |
9 | 石宁, 刘琪英, 王铁军, 等. 一步催化转化纤维素制备化学品的研究进展[J]. 新能源进展, 2014, 2(4): 245-253. |
SHIN, LIUQ Y, WANGT J, et al. Progress in one-pot catalytic transformation of cellulose into valuable chemicals[J]. Advances in New and Renewable Energy, 2014, 2(4): 245-253. | |
10 | YANK, WUG S, LAFLEURT, et al. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable & Sustainable Energy Reviews, 2014, 38: 663-676. |
11 | WESTR M, LIUZ Y, PETERM, et al. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system[J]. Journal of Molecular Catalysis A: Chemical, 2008, 296(1/2): 18-27. |
12 | FUKUOKAA, DHEPEP L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie: International Edition, 2006, 45(31): 5161-5163. |
13 | SHROTRIA, KOBAYASHIH, FUKUOKAA. Cellulose depolymerization over heterogeneous catalysts[J]. Accounts of Chemical Research, 2018, 51(3): 761-768. |
14 | ZHANGJ, LIJ B, WUS B, et al. Advances in the catalytic production and utilization of sorbitol[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 11799-11815. |
15 | BEECK B ODE, DUSSELIERM, GEBOERSJ, et al. Direct catalytic conversion of cellulose to liquid straight-chain alkanes[J]. Energy & Environmental Science, 2015, 8(1): 230-240. |
16 | 陈伦刚, 刘勇, 张兴华, 等. 纤维素催化转化制备C5/C6烷烃燃料的反应与催化体系的研究进展[J]. 林产化学与工业, 2017, 37(2): 22-34. |
CHENL G, LIUY, ZHANGX H, et al. Progress on reaction and catalyst for production of C5/C6 alkane fuels from cellulose by catalytic conversion[J]. Chemistry and Industry of Forest Products, 2017, 37(2): 22-34. | |
17 | HUBERG W, CORTRIGHTR D, DUMESICJ A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates[J]. Angewandte Chemie: International Edition, 2004, 43(12): 1549-1551. |
18 | WESTR M, TUCKERM H, BRADEND J, et al. Production of alkanes from biomass derived carbohydrates on bi-functional catalysts employing niobium-based supports[J]. Catalysis Communications, 2009, 10(13): 1743-1746. |
19 | LIN, TOMPSETTG A, HUBERG W. Renewable high-octane gasoline by aqueous-phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/zirconium phosphate catalysts[J]. ChemSusChem, 2010, 3(10): 1154-1157. |
20 | ZHANGQ, JIANGT, LIB, et al. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41[J]. ChemCatChem, 2012, 4(8): 1084-1087. |
21 | ZHANGQ, WANGT, XUY, et al. Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water[J]. Energy Conversion and Management, 2014, 77: 262-268. |
22 | VILCOCQL, CABIACA, ESPECELC, et al. New insights into the mechanism of sorbitol transformation over an original bifunctional catalytic system[J]. Journal of Catalysis, 2014, 320: 16-25. |
23 | LIN, HUBERG W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: identification of reaction intermediates[J]. Journal of Catalysis, 2010, 270(1): 48-59. |
24 | CHENK, TAMURAM, YUANZ, et al. One-pot conversion of sugar and sugar polyols to n-alkanes without C-C Dissociation over the Ir-ReOx /SiO2 catalyst combined with H-ZSM-5[J]. ChemSusChem, 2013, 6(4): 613-621. |
25 | LIUS, TAMURAM, NAKAGAWAY, et al. One-pot conversion of cellulose into n-hexane over the Ir-ReOxSiO2 catalyst combined with HZSM-5[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1819–1827. |
26 | MURATAK, LIUY, INABAM, et al. Hydrocracking of biomass-derived materials into alkanes in the presence of platinum-based catalyst and hydrogen[J]. Catalysis Letters, 2010, 140: 8-13. |
27 | CLIMENTM J, CORMAA, IBORRAS. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J]. Green Chemistry, 2014, 16(2): 516-547. |
28 | NAKAGAWAY, LIUS, TAMURAM, et al. Catalytic total hydrodeoxygenation of biomass-derived polyfunctionalized substrates to alkanes[J]. ChemSusChem, 2015, 8(7): 1114-1132. |
29 | 谢嘉维, 张香文, 谢君健, 等. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424 -1433. |
XIEJ W, ZHANGX W, XIEJ J, et al. Synthesis of high-density jet fuels from biomass[J]. Progress in Chemistry, 2018, 30(9): 1424 -1433. | |
30 | 闫少康, 孙绍晖, 马春松, 等. 生物质基含氧化合物化学催化法制备长链烷烃的研究进展[J]. 化工进展, 2016, 35(5): 1377-1386. |
YANS K, SUNS H, MA C S, et al. Advances on chemocatalytic transformation of biomass-derived oxygenated compounds into long-chain hydrocarbons[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1377-1386. | |
31 | MAMMANA S, LEE J M, KIM Y C, et al. Furfural: Hemicellulose/xylosederived biochemical[J]. Biofuels Bioproducts & Biorefining, 2008, 2(5): 438-454. |
32 | ROSATELLAA A, SIMEONOVS P, FRADER F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 13(4): 754-793. |
33 | SAHAB, ABU-OMARM M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents[J]. Green Chemistry, 2014, 16(1): 24-38. |
34 | DUTTAS, PAL S. Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: combined solvent-nanocatalysis approach for biorefinary[J]. Biomass & Bioenergy, 2014, 62: 182-197. |
35 | KUCHEROVF A, ROMASHOVL V, GALKINK I, et al. Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8064-8092. |
36 | WESTR M, LIUZ Y, PETERM, et al. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates[J]. ChemSusChem, 2008, 1(5): 417-424. |
37 | XINGR, SUBRAHMANYAMA V, OLCAYH, et al. Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions[J]. Green Chemistry, 2010, 12(11): 1933-1946. |
38 | FABAL, DÍAZE, ORDÓÑEZS. Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides[J]. Applied Catalysis B: Environmental, 2012, 113/114: 201–211. |
39 | SADABAI, OJEDAM, MARISCALR, et al. Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 638-648. |
40 | FABAL, DÍAZE, ORDÓÑEZS. Performance of bifunctional Pd/MxNyO (M= Mg, Ca; N= Zr, Al) catalysts for aldolization–hydrogenation of furfural–acetone mixtures[J]. Catalysis Today, 2011, 164(1): 451–456. |
41 | FABAL, DIAZE, ORDÓÑEZS. One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis[J]. ChemSusChem, 2014, 7(10): 2816-2820. |
42 | FABAL, DIAZE, ORDÓÑEZS. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons[J]. ChemSusChem, 2013, 6(3): 463-473. |
43 | BARRETTC J, CHHEDAJ N, HUBERG W, et al. Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water[J]. Applied Catalysis B: Environmental, 2006, 66(1/2): 111-118. |
44 | XUW J, LIUX H, RENJ W, et al. A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation[J]. Catalysis Communications, 2010, 11(8): 721-726. |
45 | XIAQ N, CUANQ, LIUX H, et al. Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans[J]. Angewandte Chemie: International Edition, 2014, 53(37): 9755-9760. |
46 | YANGJ F, LIN, LIS S, et al. Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions[J]. Green Chemistry, 2014, 16(12): 4879-4884. |
47 | YANGJ F, LIN, LIG Y, et al. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone[J]. ChemSusChem, 2013, 6(7): 1149-1152. |
48 | PHOLJAROENB, LIN, YANGJ F, et al. Production of renewable jet fuel range branched alkanes with xylose and methyl isobutyl ketone[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13618-13625. |
49 | LIANGG, WANGA, ZHAOX, et al. Selective aldol condensation of biomass-derived levulinic acid and furfural in aqueous-phase over MgO and ZnO[J]. Green Chemistry, 2016, 18: 3430-3438. |
50 | XUJ L, LIL, LIG Y, et al. Synthesis of renewable C8–C10 alkanes with angelica lactone and furfural from carbohydrates[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6126-6134. |
51 | 马隆龙, 石宁, 王铁军, 等. 一种利用糠醛类化合物与环酮制备C10~C18长链环烷烃的方法: CN201410226059.2[P]. 2014-09-17. |
MA L L, SHIN, WANGT J, et al. One method for preparing C10-C18 long-chain cycloalkanes from furfural compounds and cycloketones: CN201410226059.2[P]. 2014-09-17. | |
52 | LIUQ, ZHANGC, SHIN, et al. Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones[J]. RSC Advances, 2018, 8(25): 13686-13696. |
53 | HRONECM, FULAJTAROVAK. Selective transformation of furfural to cyclopentanone[J]. Catalysis Communications, 2012, 24: 100-104. |
54 | HRONECM, FULAJTAROVAK, LIPTAJT. Effect of catalyst and solvent on the furan ring rearrangement to cyclopentanone[J]. Applied Catalysis A: General, 2012, 437: 104-111. |
55 | HRONECM, FULAJTAROVAK, MICUSIKM. Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone[J]. Applied Catalysis A: General, 2013, 468: 426-431. |
56 | YANGJ F, LIN, LIG Y, et al. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose[J]. Chemical Communications, 2014, 50(20): 2572-2574. |
57 | YANGJ, LIS, LIN, et al. Synthesis of jet-fuel range cycloalkanes from the mixtures of cyclopentanone and butanal[J]. Industrial & Engineering Chemistry Research, 2015, 54(47): 11825-11837. |
58 | WANGW, LIN, LIG, et al. Synthesis of renewable high-density fuel with cyclopentanone derived from hemicellulose[J]. ACS Sustainable Chemistry & Engineering, 2017, 5: 1812-1817. |
59 | CORMAA, TORRE ODE LA, RENZM. High-quality diesel from hexose- and pentose-derived biomass platform molecules[J]. ChemSusChem, 2011, 4(11): 1574-1577. |
60 | CORMAA, TORRE ODE LA, RENZM, et al. Production of high-quality diesel from biomass waste products[J]. Angewandte Chemie:International Edition, 2011, 50(10): 2375-2378. |
61 | CORMAA, TORRE ODE LA, RENZM. Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables[J]. Energy & Environmental Science, 2012, 5(4): 6328-6344. |
62 | LIS S, LIN, LIG Y, et al. Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose[J]. Catalysis Today, 2014, 234: 91-99. |
63 | LIG Y, LIN, WANGX K, et al. Synthesis of diesel or jet fuel range cycloalkanes with 2-methylfuran and cyclopentanone from lignocellulose[J]. Energy & Fuels, 2014, 28(8): 5112-5118. |
64 | LIG Y, LIN, LIS S, et al. Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan[J]. Chemical Communications, 2013, 49(51): 5727-5729. |
65 | LIG Y, LIN, WANGZ Q, et al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose[J]. ChemSusChem, 2012, 5(10): 1958-1966. |
66 | LIG Y, LIN, YANGJ F, et al. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose[J]. Bioresource Technology, 2013, 134: 66-72. |
67 | WANGW, LIN, LIS S, et al. Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates[J]. Green Chem., 2016, 18: 1218-1223. |
68 | LIG Y, LIN, YANGJ F, et al. Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hβ under mild conditions[J]. Green Chemistry, 2014, 16(2): 594-599. |
69 | DENGQ, HANP, XUJ, et al. Highly controllable and selective hydroxyalkylation alkylation of 2-methylfuran with cyclohexanone for synthesis of high-density biofuel[J]. Chemical Engineering Science, 2015, 138: 239-243. |
70 | LIS S, LIN, LIG Y, et al. Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes[J]. Applied Catalysis B: Environmental, 2015, 170-171: 124–134. |
71 | ZHANGX, DENGQ, HANP, et al. Hydrophobic mesoporous acidic resin for hydroxyalkylation/alkylation of 2‐methylfuran and ketone to high‐density biofuel[J]. AIChE Journal, 2017, 63(2): 680-688. |
72 | ZHAOC, CAMAIONID M, LERCHERJ A. Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes[J]. Journal of Catalysis, 2012, 288 92-103. |
73 | LIC, ZHAOX, WANGA, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
74 | CHENGF, BREWERC E. Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 673-722. |
75 | ZHOUX Y, RAUCHFUSST B. Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent[J]. ChemSusChem, 2013, 6(2): 383-388. |
76 | ARIASK S, CLIMENTM J, CORMAA, et al. Synthesis of high quality alkyl naphthenic kerosene by reacting oil refinery with biomass refinery stream[J]. Energy & Environmental Science, 2015, 8: 317-331. |
77 | NIEG K, ZHANGX W, HANP J, et al. Lignin-derived multi-cyclic high density biofuel by alkylation and hydrogenated intramolecular cyclization[J]. Chemical Engineering Science, 2017, 158: 64–69. |
78 | ANBARASANP, BAERZ C, SREEKUMARS, et al. Integration of chemical catalysis with extractive fermentation to produce fuels[J]. Nature, 2012, 491(7423): 235-239. |
79 | XUG, LIQ, FENGJ, et al. Direct alpha-alkylation of ketones with alcohols in water[J]. ChemSusChem, 2014, 7(1): 105-109. |
80 | WANGY, PENGM, ZHANGJ, et al. Selective production of phase-separable product from a mixture of biomass-derived aqueous oxygenates[J]. Nature Communications, 2018, 9(1): 5183. |
81 | KANGS, FUJ, ZHANGG. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 340-362. |
82 | 丁爽, 葛庆峰, 祝新利. 金属氧化物催化生物质衍生羧酸酮基化研究进展[J]. 化学学报, 2017, 75: 439-447. |
DINGS, GEQ F, ZHUX L. Research progress in ketonization of biomass-derived carboxylic acids over metal oxides[J]. Acta Chimica Sinica, 2017, 75: 439-447. | |
83 | GAERTNERC A,SERRANO-RUIZJ C, BRADEND J, et al. Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion[J]. Journal of Catalysis, 2009, 266(1): 71-78. |
84 | SERRANO-RUIZJ C, WANGD, DUMESICJ A. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry, 2010, 12(4): 574-577. |
85 | SERRANO-RUIZJ C, BRADEND J, WESTR M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 184-189. |
86 | ALONSOD M, BONDJ Q, SERRANO-RUIZJ C, et al. Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes[J]. Green Chem., 2010, 12: 992-999. |
87 | BONDJ Q, ALONSOD M, WANGD, et al. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science, 2010, 327(5969): 1110-1114. |
88 | HARVEYB G, QUINTANAR L. Synthesis of renewable jet and diesel fuels from 2-ethyl-1-hexene[J]. Energy & Environmental Science, 2010, 3: 352-357. |
89 | LIMAC G S, MONTEIROJ L, MELO LIMA TDE, et al. Angelica lactones: from biomass-derived platform chemicals to value-added products[J]. ChemSusChem, 2018, 11(1): 25-47. |
90 | MASCALM, DUTTAS, GANDARIASI. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7-C10 gasoline-like hydrocarbons[J]. Angewandte Chemie: International Edition, 2014, 53(7): 1854-1857. |
91 | XINJ, ZHANGS, YAND, et al. Formation of C-C bonds for the production of bio-alkanes under mild conditions[J]. Green Chemistry, 2014, 16: 3589-3595. |
92 | AYODELEO O, DAWODUF A, YAND, et al. Catalytic synthesis of renewable hydrocarbons via hydrodeoxygenation of angelica lactone ditrimers[J]. Fuel, 2018, 221: 311-319. |
93 | AYODELEO O, DAWODUF A, YAND, et al. Hydrodeoxygenation of angelica lactone dimers and trimers over silica-alumina supported nickel catalyst[J]. Renewable Energy, 2016, 86: 943-948. |
[1] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[2] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[3] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[4] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[5] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[6] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[7] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[8] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[9] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[10] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[11] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[12] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[13] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[14] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
[15] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |