Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (9): 4085-4094.DOI: 10.16085/j.issn.1000-6613.2018-2317
• Industrial catalysis • Previous Articles Next Articles
Hongxuan QIU1(),Yichang YU2,Chengjun LI1,Hongwen GAO1()
Received:
2018-11-28
Online:
2019-09-05
Published:
2019-09-05
Contact:
Hongwen GAO
通讯作者:
郜洪文
作者简介:
仇宏暄(1995—),男,硕士研究生,研究方向为含油废水的处理。E-mail:基金资助:
CLC Number:
Hongxuan QIU,Yichang YU,Chengjun LI,Hongwen GAO. Preparation of SiO2/BiOBr photocatalytic materials and treatment ofoily wastewater[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4085-4094.
仇宏暄,余义昌,黎城君,郜洪文. SiO2/BiOBr光催化材料制备及其对含油废水的处理[J]. 化工进展, 2019, 38(9): 4085-4094.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2317
材料 | O 1s/% | Si 2p/% | Br 3d/% | Bi 4f/% |
---|---|---|---|---|
BiOBr | 34.06 | 0.00 | 25.63 | 40.31 |
4SiO2/BiOBr | 52.28 | 13.41 | 14.02 | 20.29 |
材料 | O 1s/% | Si 2p/% | Br 3d/% | Bi 4f/% |
---|---|---|---|---|
BiOBr | 34.06 | 0.00 | 25.63 | 40.31 |
4SiO2/BiOBr | 52.28 | 13.41 | 14.02 | 20.29 |
油品名 | 密度/g·mL-1 | 运动黏度(20℃)/mm2·s-1 | 成分 |
---|---|---|---|
机油 | 0.91 | 67.81 | 非挥发性油脂 |
食用油 | 0.91 | 12 | C12饱和脂肪酸 |
柴油 | 0.83 | 26 | C9~C25烷烃基 |
油品名 | 密度/g·mL-1 | 运动黏度(20℃)/mm2·s-1 | 成分 |
---|---|---|---|
机油 | 0.91 | 67.81 | 非挥发性油脂 |
食用油 | 0.91 | 12 | C12饱和脂肪酸 |
柴油 | 0.83 | 26 | C9~C25烷烃基 |
1 | XU C , JIAO C , YAO R , et al . Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H3PO4 for marine oil pollution[J]. Environmental Pollution, 2018, 233: 194-200. |
2 | KING S M , LEAF P A , OLSON A C , et al . Photolytic and photocatalytic degradation of surface oil from the deepwater horizon spill[J]. Chemosphere, 2014, 95(1): 415-422. |
3 | JUDD S , QIBLAWEY H , Al-MARRIL M , et al . The size and performance of offshore produced water oil-removal technologies for reinjection[J]. Separation & Purification Technology, 2014, 134: 241-246. |
4 | 张翼, 于婷, 毕永慧,等 . 含油废水处理方法研究进展[J]. 化工进展, 2008, 27(8): 1155-1161. |
ZHANG Yi , YU Ting , BI Yonghui , et al . Research progress of oily wastewater treatment methods[J]. Chemical Industry and Engineering Progress, 2008, 27(8): 1155-1161. | |
5 | 吴云英, 于晓彩, 金晓杰,等 . 碳纳米管和纳米二氧化钛复合光催化剂处理海洋柴油污染的研究[J]. 海洋技术学报, 2015, 34(5):104-108. |
WU Yunying , YU Xiaocai , JIN Xiaojie , et al . Study on the treatment of marine diesel pollution by carbon nanotubes and nano-titanium dioxide composite photocatalyst[J]. Journal of Marine Technology, 2015, 34(5): 104-108. | |
6 | 欧阳仟, 姚静雯, 黄进, 等 . Pt/Al2O3-beta催化脂肪酸甲酯加氢脱氧制备第二代生物柴油[J].石油化工, 2018, 47(9): 929-935. |
OUYANG Qian , YAO Jingwen , HUANG Jin , et al . Preparation of second generation biodiesel by hydrodeoxidation of fatty acid methyl ester catalyzed by Pt/Al2O3-beta[J]. Petrochemical Industry, 2008, 47(9): 929-935. | |
7 | 史晨, 杨庆, 李娜 . 生物接触氧化法处理机务段含油废水试验研究[J]. 工业水处理, 2012, 32(12): 42-44. |
8 | SHI Chen , YANG Qing , LI Na . Experimental study on biological contact oxidation treatment of oily wastewater from locomotive depot[J]. Industrial Water Treatment, 2012, 32(12): 42-44. |
9 | 宜慧, 常波, 杨玲引, 等 . 高效石油烃降解菌的筛选及其对原油污染土壤的修复[J]. 化工环保, 2018, 38(4): 461-465. |
YI Hui , CHANG Bo , YANG Lingyin ,et al . Screening of high efficiency oil hydrocarbon degrading bacteria and its remediation to crude oil contaminated soil[J]. Environmental Protection of Chemical Industry, 2018, 38(4): 461-465. | |
10 | TRI P T, VISVANATHAN C , JEGATHEESAN V . Biological treatment of oily wastewater from gas stations by membrane[J]. Revue Du Génie Et De La Science De Lenvironnement, 2006, 5(4): 309-316. |
11 | YU X C , JI Q Y , ZHANG J , et al . Photocatalytic degradation of diesel pollutants in seawater under visible light[J]. Regional Studies in Marine Science, 2018, 18: 139-144. |
12 | COCA J , GUTIERREZ G , BENITO J . Treatment of oily wastewater[M]// Nato Science for Peace & Security, Springer, 2011: 1-55. |
13 | Hamerski MACIEJ , Grzechulska JOANNA , ANTONI Waldemar Morawski . Photocataslytic purification of soil contaminated with oil using modified TiO2 powders[J]. Solar Energy, 1999, 66(6): 395-399. |
14 | ZIOLLI R L , JARDIM W F . Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO2 [J]. Photochem Photobiol A, 2002, 147: 205-212. |
15 | SIVAKUMAR A , MURUGESAN B , LOGANATHAN A , et al . A review on decolourisation of dyes by photodegradation using various bismuth catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(5): 2300-2306. |
16 | LV Y , PAN C , MA X, et al . Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation[J]. Applied Catalysis B: Environmental, 2013, s138/139(28): 26-32. |
17 | GUO M Y , NG A M C, LIU F Z , et al . Effect of native defects on photocatalytic properties of ZnO[J]. J. Phys. Chem. C, 2011, 115(22): 11095-11101. |
18 | 季秋忆, 于晓彩, 张健, 等 .可见光下利用ZrO2(Er3+)/TiO2光催化降解海水中柴油污染[J]. 材料导报, 2017, 31(s1): 368-373. |
JI Qiuyi , YU Xiaocai , ZHANG Jian , et al . Photocatalytic degradation of diesel pollution in seawater by ZrO2(Er3+)/TiO2 in visible light[J]. Materials Review, 2017, 31(s1): 368-373. | |
19 | XU C W , XIE W X , YU Y , et al . Photocatalytic and filtration performance study of TiO2/CNTs-Filter for oil particle[J]. Process Safety and Environmental Protection, 2019, 123: 72-78. |
20 | ASHWIN C , CHIN K C . Photocatalytic treatment of palm oil mill effluent by visible light-active calcium ferrite: effects of catalyst preparation technique[J]. Journal of Environmental Management, 2019, 234: 404-411. |
21 | LI H , LI N , CHEN D , et al . Polyethylene imine-grafted ACF@BiOI0.5Cl0.5, as a recyclable photocatalyst for high-efficient dye removal by adsorption-combined degradation[J]. Applied Surface Science, 2017, 403: 80-88. |
22 | TIAN Y , LI W , ZHAO C H , et al . Fabrication of hollow mesoporous SiO2-BiOCl@PANI@Pd photocatalysts to improve the photocatalytic performance under visible light[J]. Applied Catalysis B: Environmental, 2017, 213: 136-146. |
23 | YUAN L W , LI L L , WANG L J , et al . Accelerated photocatalytic oxidation of carbamazepine by a novel 3D hierarchical protonated g-C3N4/BiOBr heterojunction: performance and mechanism[J]. Applied Surface Science, 2019, 437: 527-539. |
24 | HUANG Q , LIN Y , CAI T , et al . Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375: 201-208. |
25 | PHATTRANIT D , ANUKORN P , KHWANCHANOK D , et al . Microwave-hydrothermal synthesis of BiOBr/Bi2WO6 nanocomposites for enhanced photocatalytic performance[J]. Ceramics International, 2018, 44(s1): s148-s151. |
26 | LI W , JIA X , LI P , et al . Hollow mesoporous SiO2-BiOBr nanophotocatalyst: synthesis, characterization and application in photodegradation of organic dyes under visible-light irradiation[J]. Electric Power Information & Communication Technology, 2015, 3(6):150427002715002. |
27 | ZHU S R , QI Q , ZHAO W N , et al . Hierarchical core-shell SiO2@PDA@BiOBr microspheres with enhanced visible-light-driven photocatalytic performance[J]. Dalton Trans., 2017, 46(34): 11451-11458. |
28 | DI J , XIA J , JI M , et al . Carbon quantum dots induced ultrasmall BiOI nanosheets with assembled hollow structures for broad spectrum photocatalytic activity and mechanism insight[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2016, 32(8): 2075. |
29 | CHENG L , YAN J , ZHAO S , et al .Multiple charge carrier transfer pathways in BiOBr/Bi2O3/BiO0.67F1.66 ternary composite with high adsorption and photocatalytic performance[J]. Journal of Alloys and Compounds, 778, 2019: 924-832. |
30 | WANG D , HOU P , YANG P , et al . BiOBr@SiO2, flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis[J]. Applied Surface Science, 2017, 430: 539-548. |
31 | JAFARI H , AFSHAR S , ZABIHI O , et al . Enhanced photocatalytic activities of TiO2-SiO2, nanohybrids immobilized on cement-based materials for dye degradation[J]. Research on Chemical Intermediates, 2016, 42(4):2963-2978. |
32 | MACHIDA M , NORIMOTO K , WATANABE T , et al . The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst[J]. Journal of Materials Science, 1999, 34(11): 2569-2574. |
33 | 张雨春 .纳米二氧化钛光催化氧化法降解含蜡油/柴油循环水[D]. 北京: 北京化工大学, 2008. |
ZHANG Yuchun . Photocatalytic oxidation of nanometer titanium dioxide to degrade waxy oil/diesel oil circulating water[D]. Beijing: Beijing University of Chemical Technology, 2008. | |
34 | 崔玲君, 张前前, 李苓, 等 . 海水中原油光降解与TiO2光催化降解的比较研究[J]. 中国海洋大学学报(自然科学版), 2016, 46(6):100-107. |
CUI Lingjun , ZHANG Qianqian , LI Lin , et al . Comparison between photodegradation of crude oil and photocatalytic degradation of TiO2 in seawater[J]. Journal of Ocean University of China (Natural Science Edition), 2016, 46(6): 100-107. | |
35 | JI Q , YU X , ZHANG J , et al . Photocatalytic degradation of diesel pollutants in seawater by using ZrO2 (Er3+)/TiO2, under visible light[J]. Journal of Environmental Chemical Engineering, 2017, 5(2):1423-1428. |
36 | 姜建辉, 梁鹏举, 刘速,等 . Cu、Ni共掺杂ZnO光催化性能及机理[J]. 无机化学学报, 2018, 34(3): 499-506. |
JIANG Jianhui , LIANG Pengju , LIU Su , et al . Photocatalytic performance and mechanism of Cu and Ni co-doped ZnO[J]. Journal of Inorganic Chemistry, 2018,34(3):499-506. | |
37 | 康宏平, 孙振亚, 刘建永,等 . Ag+-TiO2/AC复合材料的可见光吸附-光催化协同作用[J].环境工程学报, 2015, 9(4): 1620-1624. |
KANG Hongping , SUN Zhenya , LIU Jianyong , et al . Visible light adsorption-photocatalytic synergies of Ag+-TiO2/AC composites[J]. Journal of Environmental Engineering, 2015, 9(4): 1620-1624. | |
38 | JI Q , YU X , NIE Z , et al . Lanthanide oxide doped zinc oxide: effective photocatalysts for the degradation of diesel in seawater under visible light irradiation[J]. Reaction Kinetics Mechanisms & Catalysis, 2018, 124(1): 1-12. |
39 | WANG G , SUN Q , ZHANG Y , et al . Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution[J]. Desalination, 2010, 263(1): 183-188. |
40 | FU J , TIAN Y , CHANG B , et al . BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22(39): 21159-21166. |
41 | ZHANG J , WANG X , WANG X , et al . Floating photocatalysts based on loading Bi/N-doped TiO2 on expanded graphite C/C (EGC) composites for the visible light degradation of diesel[J]. RSC Advances, 2015, 5(88): 71922-71931. |
42 | YU Y , LI C , HUANG S , et al . BiOBr hybrids for organic pollutant removal by the combined treatments of adsorption and photocatalysis[J]. RSC Adv., 2018, 8: 32368. |
43 | ZHOU Y , LI W , WAN W , et al . W/Mo co-doped BiVO4, for photocatalytic treatment of polymer-containing wastewater in oilfield[J]. Superlattices & Microstructures, 2015, 82: 67-74. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[15] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |