Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3072-3078.DOI: 10.16085/j.issn.1000-6613.2018-2297
• Chemical processes and equipment • Previous Articles Next Articles
Changliang WANG(),Maocheng TIAN()
Received:
2018-11-26
Online:
2019-07-05
Published:
2019-07-05
Contact:
Maocheng TIAN
通讯作者:
田茂诚
作者简介:
王长亮(1994—),男,博士研究生,研究方向微通道两相流。E-mail:<email>wcl0722@163.com.</email>
基金资助:
CLC Number:
Changliang WANG, Maocheng TIAN. Surface wettability effect on Taylor flow characteristics in microchannels[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3072-3078.
王长亮, 田茂诚. 壁面润湿性对微通道内Taylor流动特性的影响[J]. 化工进展, 2019, 38(07): 3072-3078.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2297
物相 | 密度/ kg·m-3 | 黏度/ Pa·s | 表面张力/ N·m-1 |
---|---|---|---|
空气 | 1.225 | 1.78×10-5 | 0.07275 |
水 | 998.2 | 0.001 |
物相 | 密度/ kg·m-3 | 黏度/ Pa·s | 表面张力/ N·m-1 |
---|---|---|---|
空气 | 1.225 | 1.78×10-5 | 0.07275 |
水 | 998.2 | 0.001 |
A | —— | yz方向上横截面 |
---|---|---|
Ca | —— | 毛细管数 |
J | —— | 表观流速,m·s-1 |
k | —— | 自由表面曲率 |
p | —— | 压力,Pa |
α | —— | 体积分数 |
σ | —— | 表面张力,N·m-1 |
θ | —— | 接触角,(°) |
ρ | —— | 密度,kg·m-3 |
下角标 | ||
G | —— | 气相 |
L | —— | 液相 |
W | —— | 水 |
A | —— | yz方向上横截面 |
---|---|---|
Ca | —— | 毛细管数 |
J | —— | 表观流速,m·s-1 |
k | —— | 自由表面曲率 |
p | —— | 压力,Pa |
α | —— | 体积分数 |
σ | —— | 表面张力,N·m-1 |
θ | —— | 接触角,(°) |
ρ | —— | 密度,kg·m-3 |
下角标 | ||
G | —— | 气相 |
L | —— | 液相 |
W | —— | 水 |
1 | 王长亮, 靳遵龙, 王永庆, 等 . 微通道气液两相流研究进展[J]. 化工进展, 2017, 36(s1): 1-7. |
WANG Changliang , JIN Zunlong , WANG Yongqing , et al . Research progress of gas-liquid two-phase flow in micro-channels [J]. Chemical Industry and Engineering Progress, 2017, 36(s1): 1-7. | |
2 | 陈光文, 袁权 . 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
CHEN Guangwen , YUAN Quan . Microchemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
3 | QIAN Dongying , LAWAL A . Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chem. Eng. Sci., 2006, 61(23): 7609-7625. |
4 | GUPTA R , FLETCHER D F , HAYNES B S . CFD modelling of flow and heat transfer in the Taylor flow regime[J]. Chem. Eng. Sci., 2010, 65(6): 2094–2107. |
5 | LEUNG S S Y , LIU Yang , FLETCHER D F , et al . Heat transfer in well-characterised Taylor flow[J]. Chem. Eng. Sci., 2010, 65(24): 6379-6388. |
6 | GUNTHER A , JHUNJHUNWALA M , THALMANN M , et al . Micromixing of miscible liquids in segmented gas-liquid flow[J]. Langmuir, 2005, 21(4): 1547-1555. |
7 | GARSTECKI P , FISCHBACH M A , WHITESIDES G M . Design for mixing using bubbles in branched microfluidic channels[J]. Appl. Phys. Lett., 2005, 86(24): 244108. |
8 | LAI S M , MARTIN-ARANDA R , YEUNG K L . Knoevenagel condensation reaction in a membrane microreactor[J]. Chem. Commun., 2002, 21(2):218-219. |
9 | YEUNG K L , ZHANG X F , LAU W N, et al . Experiments and modeling of membrane microreactors[J]. Catal. Today, 2005, 110(1/2): 26-37. |
10 | LANG P , HILL M , KROSSING I , et al . Multiphase minireactor system for direct fluorination of ethylene carbonate[J]. Chem. Eng. J., 2012, 179: 330–337. |
11 | 付涛涛, 朱春英, 王东继, 等 . 微通道内气液传质特性[J]. 化工进展, 2011, 30(s2): 95-98. |
FU Taotao , ZHU Chunying , WANG Dongji , et al . Mass transfer characteristics for gas-liquid two-phase flow in microchannels[J]. Chemical Industry and Engineering Progress, 2011, 30(s2): 95-98. | |
12 | IRANDOUST S , ANDERSSON B . Liquid film in Taylor flow through a capillary[J]. Ind. Eng. Chem. Res., 1989, 28(11): 1684-1688. |
13 | BERCIC G , PINTAR A . The role of gas bubbles and liquid slug lengths on mass transport in the Taylor flow through capillaries[J]. Chem. Eng. Sci., 1997, 52(21/22): 3709-3719. |
14 | BATEN J M VAN , KRISHNA R . CFD simulations of wall mass transfer for Taylor flow in circular capillaries[J]. Chem. Eng. Sci., 2005, 60(4): 1117-1126. |
15 | IRANDOUST S , ANDERSSON B . Liquid film in Taylor flow through a capillary.[J] Indus. Eng. Chem. Res., 1989, 28(11): 1684-1688. |
16 | 乐军, 陈光文, 袁权, 等 . 微通道内气-液传质研究[J]. 化工学报, 2006, 57(6): 1296-1303. |
LE Jun , CHEN Guangwen , YUAN Quan , et al . Mass transfer in gas-liquid flow in microchannel[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(6): 1296-1303. | |
17 | DAI L , CAI W F , XIN F . Numerical study on bubble formation of a gas-liquid flow in a T-junction micro-channel[J]. Chemical Engineering and Technology, 2009, 32(12): 1984-1991. |
18 | TRIPLETT K A , GHIAASIAAN S M , ABDEL-KHALIK S I , et al . Gas–liquid two-phase flow in microchannels : Part II: void fraction and pressure drop[J]. International Journal of Multiphase Flow, 1999, 25(3): 395-410. |
19 | CHEN W L ,TWU M C, PAN C . Gas-liquid two-phase flow in micro-channels[J]. International Journal of Multiphase Flow, 2002, 28(7): 1235-1247. |
20 | SERIZAWA A , FENG Ziping , KAWARA Z . Two-phase flow in microchannels[J]. Experimental Thermal and Fluid Science, 2002, 26(6/7): 703-714. |
21 | KAWAHARA A , SADATOMI M , NEI K, et al . Characteristics of two-phase flows in a rectangular microchannel with a T-junctionn type gas-liquid mixer[J]. Heat. Transf. Eng., 2011, 32(7/8): 585-594. |
22 | 王维萌, 马一萍, 陈斌 . 十字交叉微通道内微液滴生成过程的数值模拟[J]. 化工学报, 2015, 66(5): 1633-1641. |
WANG Weimeng , Yiping MA , CHEN Bin . Numerical simulation of droplet generation in crossing micro-channel[J]. CIESC Journal, 2015, 66(5): 1633-1641. | |
23 | IDE H, KIMURA R , KAWAJI M . Effect of channel wetting properties on flow characteristics of gas-liquid two-phase flow in a microchannel [C]//ASME-JSME-KSME Joint Fluids Engineering Conference, Hamamatsu, Japan: Fluids Engineering Division, 2011: 2493-2500. |
24 | BARAJAS A M , PANTON R L . The effects of contact angle on two-phase flow in capillary tubes[J]. International Journal of Multiphase Flow, 1993, 19(2): 337-346. |
25 | KUMAR V , VASHISTH S , HOARAU Y , et al . Slug flow in curved microreactors: hydrodynamic study[J]. Chem. Eng. Sci., 2007, 62(24): 7494-7504. |
26 | DANG Minhui , YUE Jun , CHEN Guangwen . Numerical simulation of Taylor bubble formation in a microchannel with a coverging shape mixing junction[J]. Chemical Engineering Journal, 2015, 262: 616-627. |
27 | 车德福, 李会熊 . 多相流及其应用[M]. 西安: 西安交通大学出版社, 2007: 624. |
CHE Defu , LI Huixiong . Multiphase flow and its application[M]. Xi'an: Xi'an Jiaotong University Press, 2007: 624. | |
28 | GUO Fang , CHEN Bin . Numerical study on taylor bubble formation in a micro-channel T-junction using VOF method[J]. Microgravity Science and Technology, 2009, 21(1): 51-58. |
29 | SHIRTCLIFFE N J , MCHALE G , ATHERTON S , et al . An introduction to super hydrophobicity[J]. Advances in Colloid and Interface Science, 2010, 161(1): 124-138. |
30 | SANTOS R M , KAWAJI M . Developments on wetting effects in microfludic slug flow[J]. Chemical Engineering Communications, 2012, 199(12): 1626-1641. |
31 | KHAN W , CHANDRA A K , KISHOR K , et al . Slug formation mechanism for air–water system in T-junction microchannel: a numerical investigation[J]. Chemical Papers, 2018, 72(11): 2921-2932. |
32 | YONG Yumei , YANG Chao , JIANG Yi , et al . Numerical simulation of immiscible liquid-liquid flow in microchannels using lattice Boltzmann method[J]. Science China Chemistry, 2011, 54(1): 244-256. |
33 | 孙俊杰, 郝婷婷, 马学虎, 等 . 壁面润湿性对微通道内二氧化碳-水两相流流动及传质性能的影响[J]. 化工学报, 2015, 66(9): 3405-3412. |
SUN Junjie , HAO Tingting , Xuehu MA , et al . Surface wettability effect on carbon dioxide-water two-phase flow and mass transfer in rectangular microchannel[J]. CIESC Journal, 2015, 66(9): 3405-3412. | |
34 | SANTOS R M , KAWAJI M . Numerical modeling and experimental investigation of gas-liquid slug formation in a microchannel T-junction[J]. International Journal of Multiphase Flow, 2010, 36(4): 314-323. |
35 | KANDLIKAR S G , LU Z , RAO N , et al . Visualization of fuel cell water transport and performance characterization under freezing conditions [R]. US Department of Energy, 2010. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[10] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[11] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[14] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[15] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |