Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (08): 3604-3611.DOI: 10.16085/j.issn.1000-6613.2018-2176
• Energy processes and technology • Previous Articles Next Articles
Zhongliang XIAO(),Zhenzhen CHI,Liubin SONG(),Zhong CAO,Anxian LI
Received:
2018-11-06
Online:
2019-08-05
Published:
2019-08-05
Contact:
Liubin SONG
通讯作者:
宋刘斌
作者简介:
肖忠良(1964—),男,教授。E-mail:基金资助:
CLC Number:
Zhongliang XIAO,Zhenzhen CHI,Liubin SONG,Zhong CAO,Anxian LI. Progress of the simulation model for power lithium ion battery[J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3604-3611.
肖忠良,池振振,宋刘斌,曹忠,黎安娴. 动力锂离子电池仿真模型研究进展[J]. 化工进展, 2019, 38(08): 3604-3611.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2176
1 | 程昀, 李劼, 贾明, 等. 锂离子电池多尺度数值模型的应用现状及发展前景[J]. 物理学报, 2015, 64(21): 137-152. |
CHENGY, LIJ, JIAM, et al. Application status and future of multi-scale numerical models for lithium ion battery[J]. Acta Phys. Sin., 2015, 64(21): 137-152. | |
2 | LIUH Q, WEIZ B, HEWD, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review[J]. Energy Conversion & Management, 2017, 150: 304-330. |
3 | BERNARDID, PAWLIKOWSKIE, NEWMANJ. A general energy-balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
4 | LAIY Q, DUS L, AIL, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049. |
5 | SONGL B, LIL, XIAOZ L, et al. Estimation of temperature distribution of LiFePO4 lithium ion battery during charge-discharge process[J]. Ionics, 2016, 22(9): 1517-1525. |
6 | XIAOZ L, ZHOUQ Q, SONGL B, et al. Assessment of thermo-electrochemical performance on cathode materials for lithium ion cells[J]. Int. J. Electrochem. Sci., 2016, 11: 2825-2834. |
7 | SONGL B, XIAOZ L, LIL J, et al. Thermo-electrochemical study on cathode materials for lithium ion cells[J]. Journal of Solid State Electrochemistry, 2015, 19(7): 2167-2175. |
8 | SONGL B, LIUJ, XIAOZ L, et al. Thermo-eletrochemical study on LiNi0.8Co0.1Mn0.1O2 with in situ modification of Li2ZrO3[J]. Ionics, 2018(1): 1-11. |
9 | GHALKHANIM, BAHIRAEIF, NAZRIG A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587. |
10 | 殷宝华, 艾亮, 杨治安, 等. 锂离子电池模块热模拟仿真[J]. 电源技术, 2017, 41(5): 696-698. |
YINB H, AIL, YANGZ A, et al. Thermal simulation of lithium ion battery module[J]. Chinese Journal of Power Sources, 2017, 41(5): 696-698. | |
11 | FENGX N, OUYANGM G, LIUX, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review[J]. Energy Storage Materials, 2017, 10: 246-267. |
12 | DONGT, PENGP, JIANGF M. Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations[J]. International Journal of Heat & Mass Transfer, 2018, 117: 261-272. |
13 | ZHANGC, SANTHANAGOPALANS, SPRAGUEM A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources, 2015, 290: 102-113. |
14 | SHAHIDS, AGELIN-CHAABM. Experimental and numerical studies on air cooling and temperature uniformity in a battery pack[J]. International Journal of Energy Research, 2018(1): 1-17. |
15 | BAIF, CHENM, SONGW, et al. Thermal management performances of PCM/Water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126: 17-27. |
16 | 靳鹏超, 王世学. 一种使用相变材料的新型电动汽车电池热管理系统[J]. 化工进展, 2014, 33(10):2608-2612. |
JINP C, WANGS X. A novel thermal management system for EV batteries using phase-change material[J]. Chemical Industry and Engineering Progess, 2014, 33(10):2608-2612. | |
17 | 曾健, 陆龙生, 陈维, 等. 基于热管技术的锂离子动力电池散热系统[J]. 化工进展, 2015, 34(1): 37-43. |
18 | ZENGJ, LUL S, CHENW, et al. Thermal control module using heat pipe for lithium-ion battery[J]. Chemical Industry and Engineering Progess, 2015, 34(1): 37-43. |
19 | XIAG D,CAOL, BIG L, et al. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367: 90-105. |
20 | 程昀, 李劼, 贾明,等. 动力锂离子电池模块散热结构仿真研究[J].中国有色金属学报, 2015, 25(6): 1607-1616. |
CHENGY, LIJ, JIAM, et al. Simulation research of heat dissipation structure for automotive lithium-ion battery packs[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1607-1616. | |
21 | MOHAMMADIANS K, ZHANGY W. Improving wettability and preventing Li-ion batteries from thermal runaway using microchannels[J]. International Journal of Heat & Mass Transfer, 2017, 118: 911-918. |
22 | DANGX J, LIY, XUK, et al. Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model[J]. Electrochimica Acta, 2016, 188(10): 356-366. |
23 | NUHICA, TERZIMEHICT, SOCZKA-GUTHT, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239(1): 680-688. |
24 | FLEISCHERC, WAAGW, BAIZ, et al. On-line self-learning time forward voltage prognosis for lithium-ion batteries using adaptive neuro-fuzzy inference system[J]. Journal of Power Sources, 2013, 243(6): 728-749. |
25 | HUX S, LIS B, PENGH E. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367. |
26 | LEE S J, KIMJ H, LEE J M, et al. The state and parameter estimation of an Li-ion battery using a new OCV-SOC concept[C]// Power Electronics Specialists Conference, 2007. Pesc IEEE, 2007: 2799-2803. |
27 | GAOM Y, LIUY Y, HEZ W. Battery state of charge online estimation based on particle filter[C]// International Congress on Image and Signal Processing. IEEE, 2011: 2233-2236. |
28 | KIMI S. Nonlinear state of charge estimator for hybrid electric vehicle battery[J]. IEEE Transactions on Power Electronics, 2008, 23(4): 2027-2034. |
29 | CHARKHGARDM, ZARIFM H. Design of adaptive H∞, filter for implementing on state-of-charge estimation based on battery state-of-charge-varying modelling[J]. Power Electronics Iet, 2015, 8(10): 1825-1833. |
30 | WANGQ Q, KANGJ Q, TANZ X, et al. An online method to simultaneously identify the parameters and estimate states for lithium ion batteries[J]. Electrochimica Acta, 2018, 289: 376-388. |
31 | DIN M S E, HUSSEINA A, ABDEL-HAFEZM F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2): 408 - 417. |
32 | DOYLEM, FULLERT F, NEWMANJ S. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
33 | NEWMANJ S, THOMASK E, HAFEZIH, et al. Modeling of lithium-ion batteries[J]. Journal of Power Sources, 2003, s119/120/121(3): 838-843. |
34 | SANTHANAGOPALANS, GUOQ, RAMADASSP, et al. Review of models for predicting the cycling performance of lithium ion batteries[J]. Journal of Power Sources, 2006, 156(2): 620-628. |
35 | ZOUC, MANZIEC, NEŠIĆD. A framework for simplification of PDE-based lithium-ion battery models[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1594-1609. |
36 | 王靖, 柯少勇, 黄贤坤,等. 锂离子电池电极颗粒分布对电化学性能影响的分析[J]. 化工进展, 2018, 37(7): 2620-2626. |
WANGJ, KES Y, HUANGX K, et al. Analysis of the effects of electrode particle size distribution on the electrochemical performances of lithium ion battery[J]. Chemical Industry and Engineering Progess, 2018, 37(7): 2620-2626. | |
37 | BARRÉA, DEGUILHEMB, GROLLEAUS, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241(11): 680-689. |
38 | LIZ, HUANGJ, LIAWB Y, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. |
39 | RAMADASSP, HARANB, GOMADAMP M, et al. Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(2): A196-A203. |
40 | SAFARIM, MORCRETTEM, TEYSSOTA, et al. Multimodal physics-based aging model for life prediction of Li-ion batteries[J]. Physical Review A, 2009, 156(3): 100-100. |
41 | BAEKK W, HONGE S, CHA S W. Capacity fade modeling of a lithium-ion battery for electric vehicles[J]. International Journal of Automotive Technology, 2015, 16(2): 309-315. |
42 | 蒋跃辉, 艾亮, 贾明, 等. 基于动态参数响应模型的动力锂离子电池循环容量衰减研究[J]. 物理学报, 2017, 66(11): 328-338. |
43 | JIANGY H, AIL, JIAM, et al. Cyclic capacity fading of the power lithium ion battery based on a numerical modelling with dynamic responses[J]. Acta Phys. Sin., 2017, 66(11): 328-338. |
44 | SCHUSTERS F, BACHT, FLEDERE, et al. Nonlinear aging characteristics of lithium-ion cells under different operational conditions[J]. Journal of Energy Storage, 2015, 1(1):44-53. |
45 | ARORAP, DOYLEM, WHITER E. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes[J]. Promotion & Education, 1999, 146(10): 3543-3553. |
46 | TANGM, ALBERTUSP, NEWMANJ. Two-dimensional modeling of lithium deposition during cell charging[J]. Journal of the Electrochemical Society, 2009, 51(2): 131-157. |
47 | YANGX G, LENGY, ZHANGG, et al. Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging[J]. Journal of Power Sources, 2017, 360: 28-40. |
48 | 李宗赞. 应力及材料塑性变形对锂离子电池性能的影响[D]. 上海: 上海大学, 2015. |
LIZ Z. Impacts of stress and plastic deformation on the performance of lithium ion batteries[D]. Shanghai: Shanghai University, 2015. | |
49 | SONGY C, SOH A K, ZHANGJ Q. On stress-induced voltage hysteresis in lithium ion batteries: impacts of material property, charge rate and particle size[J]. Journal of Materials Science, 2016, 51(21): 1-10. |
50 | 李书国, 艾亮, 贾明, 等. 基于电化学热耦合模型的锂离子动力电池极化特性[J]. 中国有色金属学报, 2018(1): 142-149. |
LIS G, AIL, JIAM, et al. Polarization characteristics of lithium ion power battery based on electrochemical-thermal model[J]. The Chinese Journal of Nonferrous Metals, 2018(1): 142-149. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[3] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[6] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[7] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[8] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[9] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[10] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[11] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[12] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[13] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[14] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[15] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |