Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2234-2242.DOI: 10.16085/j.issn.1000-6613.2018-1618
• Materials science and technology • Previous Articles Next Articles
Fengyan FU(),Jie ZHANG,Jingquan CHENG,Sufang ZHANG,Yan ZHANG,Jing FAN
Received:
2018-08-07
Revised:
2019-01-21
Online:
2019-05-05
Published:
2019-05-05
作者简介:
<named-content content-type="corresp-name">付凤艳</named-content>(1981—),女,博士,讲师,研究方向为高分子化学。E-mail:<email>1374195561@qq.com</email>。
基金资助:
CLC Number:
Fengyan FU, Jie ZHANG, Jingquan CHENG, Sufang ZHANG, Yan ZHANG, Jing FAN. Application of graphene oxide in proton exchange membrane for fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2234-2242.
付凤艳, 张杰, 程敬泉, 张素芳, 张彦, 樊静. 氧化石墨烯在燃料电池质子交换膜中的应用[J]. 化工进展, 2019, 38(05): 2234-2242.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1618
1 | KERRES J A . Blended and cross-linked ionomer membranes for application in membrane fuel cells [J]. Fuel Cells, 2005, 5 (2): 230-247. |
2 | SCHALENBACH M , HOEFNER T , PACIOK P , et al . Gas permeation through Nafion [J]. J. Phys.Chem.C, 2015,119 (45): 25145-25155. |
3 | ITO H, MAEDA T , NAKANO A , et al . Properties of Nafion membranes under PEM water electrolysis conditions [J]. Int.J. Hydrogen Energy, 2011, 36 (17): 10527-10540. |
4 | EFTEKHARI A , SHULGA Y M , BASKAKOV S A , et al . Graphene oxide membranes for electrochemical energy storage and conversion [J]. Int. J. Hydrogen Energy, 2018, 43 (4): 2307-2326. |
5 | DONG Y Z , LIU M J , LIU Y , et al . Molybdenum-doped mesoporous carbon/graphene composites as efficient electrocatalysts for the oxygen reduction reaction [J]. J.Mater.Chem.A, 2015, 3 (39): 19969-19973. |
6 | FERRARI A C , BASKO D M . Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nat. Nanotechnol., 2013, 8 (4): 235-246. |
7 | STINE R , LEE W K, WHITENER K E , et al . Chemical stability of graphene fluoride produced by exposure to XeF2 [J]. Nano Lett., 2013, 13 (9): 4311-4316. |
8 | 肖淑娟,于守武,谭小耀 . 石墨烯类材料的应用及研究进展[J]. 化工进展,2015, 34(5):1345-1348. |
XIAO S J , YU S W , TAN X Y . Research progress and the applications of graphene materials [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1345-1348. | |
9 | GAO W . The chemistry of graphene oxide. graphene oxide reduction. recipes, spectroscopy. applications [M].US: Springer International Publishing , 2015: 61-95. |
10 | AMBROSI A , CHUA C K , BONANNI A , et al . Electrochemistry of graphene and related materials [J]. Chem. Rev., 2014, 114 (14): 7150-7188. |
11 | RAVIKUMAR, SCOTT K . Freestanding sulfonated graphene oxide paper: a new polymer electrolyte for polymer electrolyte fuel cells [J]. Chem. Commun. ,2012, 48 (45): 5584 |
12 | SHEN H , WANG N , MA K, et al . Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance [J]. J. Membr. Sci.,2017, 527: 43-50. |
13 | HUMMERS W S , OFFEMAN R E . Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80: 1339. |
14 | 王慧 . 氧化石墨烯及其功能化改性材料富集水中重金属离子机理研究[D]. 长沙:湖南大学,2016. |
WANG H . Application of graphene oxide and its functional composites for enrichment of heavy metal ions from aqueous solution [D]. Changsha: Hunan University, 2016. | |
15 | SHAO Y , WANG J , ENGELHARD M , et al . Facile and controllable electrochemical reduction of graphene oxide and its applications [J]. J.Mater. Chem., 2010, 20 (4): 743-748. |
16 | SONG M K , ZHU X B , LIU M L . A triazole-based polymer electrolyte membrane for fuel cells operated in a wide temperature range (25~150°C) with little humidification [J]. J. Power Sources ,2013, 241: 219-224. |
17 | ZHANG H , SHEN P K . Recent development of polymer electrolyte membranes for fuel cells [J]. Chem. Rev. ,2012, 112 (5): 2780-2832. |
18 | KETPANG K , SON B, LEE D, et al . Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions [J]. J. Membr. Sci. ,2015, 488: 154-165. |
19 | KETPANG K , LEE K, SHANMUGAM S . Facile synthesis of porous metal oxide nanotubes and modified Nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity [J]. ACS Appl. Mater. Interfaces, 2014, 6 (19): 16734-16744. |
20 | GARAGA M N , AGUILEAR L , YAGHINI N , et al . Achieving enhanced ionic mobility in nanoporous silica by controlled surface interactions [J]. Phys. Chem. Chem. Phys., 2017, 19 (8): 5727-5736. |
21 | JIA W , TANG B B , WU P Y . Novel composite PEM with long-range ionic nanochannels induced by carbon nanotube/graphene oxide nanoribbon composites [J]. ACS Appl. Mater. Interfaces, 2016, 8 (42): 28955-28963. |
22 | 张杰 . 氧化石墨烯/聚合物复合质子交换膜研究进展 [J]. 高分子通报,2016,4:37-46 |
ZHANG J . Recent progress in graphene oxide/polymer blend proton exchange membrane [J]. Polymer Bulletin, 2016, 4: 37-46. | |
23 | FENG H B , CHENG R , ZHAO X , et al . A low-temperature method to produce highly reduced graphene oxide [J]. Nature Commun., 2013, 4: 1539. |
24 | SUN M , LI J H . Graphene oxide membranes: functional structures, preparation and environmental applications [J]. Nano Today, 2018, 20: 121-137. |
25 | CHEN D , FENG H B , LI J H . Graphene oxide: preparation, functionalization, and electrochemical applications [J]. Chem. Rev., 2012, 112 (11): 6027-6053. |
26 | FENG H B , LIU Y , LI J H . Highly reduced graphene oxide supported Pt nanocomposites as highly efficient catalysts for methanol oxidation [J]. Chem. Commun., 2015, 51 (12): 2418-2420 . |
27 | ZHAO X X , YUAN W X , WU Q X , et al . High-temperature passive direct methanol fuel cells operating with concentrated fuels [J]. J. Power Sources, 2015, 273: 517-521. |
28 | CUI Y H , BAKER A P , XU X , et al . Enhancement of Nafion based membranes for direct methanol fuel cell applications through the inclusion of ammonium-X zeolite fillers [J]. J. Power Sources, 2015, 294: 369-376. |
29 | LIN C W , LU Y S . Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells [J]. J. Power Sources, 2013, 237: 187-194. |
30 | WANG L S , LAI A N , LIN C X , et al . Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells [J]. J. Membr. Sci., 2015, 492: 58-66. |
31 | YAN X H , WU R , XU J B , et al . Monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells [J]. J. Power Sources, 2016, 311: 188-194. |
32 | FENG K , TANG B B , WU P Y . “Evaporating” graphene oxide sheets (GOSs) for rolled up GOSs and its applications in proton exchange membrane fuel cell [J]. ACS Appl. Mater. Interfaces, 2013, 5(4): 1481-1488. |
33 | WEI J , TANG B B , WU P Y . Novel slightly reduced graphene oxide based proton exchange membrane with constructed long-range ionic nanochannels via self-assembling of Nafion [J]. ACS Appl. Mater. Interfaces, 2017, 9 (27): 22620-22627. |
34 | LEE D C, YANG H N , PARK S H , et al . Nafion/ graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell [J]. J. Membr. Sci., 2014, 452: 20-28. |
35 | CHIEN H C , TSAI L D , HUANG C P , et al . Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells [J]. Int.J. Hydrogen Energy, 2013, 38 (31): 13792-13801. |
36 | LI Z H , XI J Y , ZHOU H P , et al . Preparation and characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application [J]. J. Power Sources, 2013, 237: 132-140. |
37 | MIKHAILENKO S D , ROBERTSON G P , GUIVER M D , et al . Properties of PEMs based on cross-linked sulfonated poly(ether ether ketone) [J]. J.Membr.Sci., 2006, 285: 306-316. |
38 | JIANG Z Q , ZHAO X S , FU Y Z , et al . Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells [J]. J.Mater. Chem., 2012, 22 (47): 24862-24869. |
39 | JIANG Z Q , ZHAO X S , MANTHIRAM A . Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells [J]. Int.J. Hydrogen Energy, 2013, 38 (14): 5875-5884. |
40 | JIANG Z J , JIANG Z Q , TIAN X N , et al . Sulfonated holey graphene oxide (SHGO) filled sulfonated poly(ether ether ketone) membrane: the role of holes in the SHGO in improving its performance as proton exchange membrane for direct methanol fuel cells [J]. ACS Appl. Mater. Interfaces, 2017, 9 (23): 20046-20056. |
41 | RAVI K , MAMLOUK M , SCOTT K . Sulfonated polyether ether ketone – sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells [J]. RSC Adv., 2014, 4 (2): 617-623. |
42 | YIN Y H , WANG H Y , CAO L , et al . Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells [J]. Electrochim. Acta , 2016, 203: 178-188. |
43 | HE Y K , WANG J T , ZHANG H Q , et al . Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions [J]. J.Mater.Chem.A, 2014, 2 (25): 9548-9558. |
44 | LEE K S, SPENDELOW J S , CHOE Y K , et al . An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs [J]. Nature Energy, 2016, 1 (9): 16120-16126. |
45 | MELCHIOR J P , MAJER G , KREUER K D . Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells [J]. Phys. Chem. Chem. Phys, 2017, 19 (1): 601-612. |
46 | QIU X , UEDA M , HU H Y , et al . Poly(2,5-benzimidazole)-grafted graphene oxide as an effective proton conductor for construction of nanocomposite proton exchange membrane [J]. ACS Appl. Mater. Interfaces, 2017, 9 (38): 33049-33058. |
47 | XU C X , CAO Y C , KUMAR R , et al . A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells [J]. J.Mater. Chem. , 2011, 21 (30): 11359-11364. |
48 | XUE C , ZOU J , SUN Z N , et al . Graphite oxide/functionalized gaphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells [J]. Int.J. Hydrogen Energy, 2014, 39 (15): 7931-7939. |
49 | ÜREGEN N , PEHLIVANOGLU K , ÖZDEMIR Y , et al . Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells [J]. Int.J. Hydrogen Energy, 2017, 42 (4): 2636-2647. |
50 | YANG J S , LIU C , GAO L P , et al . Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications [J]. RSC Adv., 2015, 5 (122): 101049-101054. |
51 | YANG J M , CHIU H C . Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells [J]. J.Membr. Sci., 2012, 419-420: 65-71. |
52 | SRINOPHAKUN T , MARTKUMCHAN S . Ionic conductivity in a chitosan membrane for a PEM fuel cell using molecular dynamics simulation [J]. Carbohydr. Polym., 2012, 88: 194-200. |
53 | SHARMA P P , KULSHRESTHA V . Synthesis of highly stable and high water retentive functionalized biopolymer-graphene oxide modified cation exchange membranes [J]. RSC Adv., 2015, 5 (70): 56498-56506. |
54 | LIU Y H , WANG J T , ZHANG H Q , et al . Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions [J]. J. Power Sources, 2014, 269: 898-911. |
55 | SHIRDAST A , SHARIF A , ABDOLLAHI M . Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes [J]. J. Power Sources, 2016, 306: 541-551. |
56 | BAI H J , LI Y F , ZHANG H Q , et al . Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells [J]. J. Membr. Sci., 2015, 495: 48-60. |
57 | PANDEY R P , SHAHI V K . A N-o-sulfonic acid benzyl chitosan (NSBC) and N, N-dimethylene phosphonic acid propylsilane graphene oxide (NMPSGO) based multi-functional polymer electrolyte membrane with enhanced water retention and conductivity [J]. RSC Adv., 2014, 4 (100): 57200-57209. |
58 | KAZEROONIAN F K , IRANAGH S A , MODARRESS H . Molecular dynamics simulation study of carboxylated and sulfonated poly(arylene ether sulfone) membranes for fuel cell applications [J]. Int.J. Hydrogen Energy, 2015, 40 (46): 15690-15703. |
59 | PAN H Y , CHEN S X , ZHANG Y Y , et al . Preparation and properties of the cross-linked sulfonated polyimide containing benzimidazole as electrolyte membranes in fuel cells [J]. J. Membr. Sci., 2015, 476: 87-94. |
60 | KOWSARI E , ZARE A , ANSARI V . Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane [J]. Int.J. Hydrogen Energy, 2015, 40 (40): 13964-13978. |
61 | MERLE G , HOSSEINY S S , WESSLING M , et al . New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells [J]. J.Membr. Sci., 2012, 409/410: 191-199. |
62 | ERKARTAL M , USTA H , CITIR M , et al . Proton conducting poly(vinyl alcohol) (PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane [J]. J. Membr. Sci., 2016, 499:156-163. |
63 | ALLAN J T S , PREST L E , EASTON E B . The sulfonation of polyvinyl chloride: synthesis and characterization for proton conducting membrane applications [J]. J. Membr. Sci., 2015, 489: 175-182. |
64 | WOO J J, SEO S J, YUN S H , et al . Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with -methylstyrene and acrylonitrile [J]. J. Membr. Sci., 2010, 363: 80-86. |
65 | YADAV R , SUBHASH A , CHEMMENCHERYR N , et al . Graphene and graphene oxide for fuel cell technology [J]. Ind. Eng. Chem. Res, 2018, 57 (29): 9333-9350. |
66 | BEYDAGHI H , JAVANBAKHT M , KOWSARI E . Synthesis and characterization of poly(vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs) [J]. Ind. Eng. Chem. Res, 2014, 53 (43): 16621-16632. |
67 | ZHAO Y X , FU Y Q , HE Y , et al . Enhanced performance of poly(ether sulfone) based composite proton exchange membranes with sulfonated polymer brush functionalized graphene oxide [J]. RSC Adv., 2015, 5 (113): 93480-93490. |
68 | MIAO S L , ZHANG H Q , LI X B , et al . A morphology and property study of composite membranes based on sulfonated polyarylene ether sulfone and adequately sulfonated graphene oxide [J]. Int.J. Hydrogen Energy, 2016, 41(1): 331-341. |
69 | KO T, KIM K, LIM M Y, et al . Sulfonated poly(arylene ether sulfone) composite membranes having poly(2.5-benzimidazole)- grafted graphene oxide for fuel cell applications [J]. J. Mater.Chem.A, 2015, 3 (41): 20595-20606. |
70 | PANDEY R P , THAKUR A K , SHAHI V K . Sulfonated polyimide / acid –functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties [J]. ACS Appl. Mater. Interfaces, 2014, 6 (19): 16993-17002. |
[1] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[4] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[6] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[7] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
[8] | YU Haiqiang, GUO Quanzhong, DU Keqin, WANG Chuan. Application of pulse electrodeposition PbO2 coating on stainless steel bipolar plate of PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 917-924. |
[9] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[10] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[11] | XIONG Jian, XIA Liufen, YU Lei, FEI Anjie, XU Chu, CHEN Shengya, JIANG Guodong. Preparation and electrochromic properties of graphene oxide and TiO2-B composite films [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3794-3800. |
[12] | CHEN Zhekun, PAN Weitong, YAO Dingsong, DING Lu, WANG Fuchen. Microstructure and rheology of microporous layer ink for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3808-3815. |
[13] | PAN Wenzheng, JI Zhiyong, WANG Jing, LI Shuming, HUANG Zhihui, GUO Xiaofu, LIU Jie, ZHAO Yingying, YUAN Junsheng. Research on the electricity production performance and degradation process of microbial fuel cell treating azo-dye saline wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3306-3313. |
[14] | CHEN Yong, CHENG Ning, YANG Yubing, LU Kailing, LUO Ying, YI Hui. Highly efficient adsorption of Basic Violet 3 dye by composite material derived from graphene oxide intercalated bentonite [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3324-3332. |
[15] | YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |