Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2252-2261.DOI: 10.16085/j.issn.1000-6613.2018-1515
• Materials science and technology • Previous Articles Next Articles
Kai YE1,2(),Feng LIANG1,2,3(),Yaochun YAO1,2,Wenhui MA1,2,3,Bin YANG1,2,3,Yongnian DAI1,2,3
Received:
2018-07-22
Revised:
2018-12-04
Online:
2019-05-05
Published:
2019-05-05
Contact:
Feng LIANG
叶凯1,2(),梁风1,2,3(),姚耀春1,2,马文会1,2,3,杨斌1,2,3,戴永年1,2,3
通讯作者:
梁风
作者简介:
<named-content content-type="corresp-name">叶凯</named-content>(1995—),男,硕士研究生,研究方向为电弧等离子体制备纳米材料。E-mail:<email>18672008847@163.com</email>。|梁风,副教授,硕士生导师,研究方向为等离子体技术制备纳米材料、高能量密度储能器件等。E-mail:<email>liangfeng@kmust.edu.cn</email>。
基金资助:
CLC Number:
Kai YE, Feng LIANG, Yaochun YAO, Wenhui MA, Bin YANG, Yongnian DAI. Development trend of preparation and application of nickel nano-powder[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2252-2261.
叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 纳米镍粉的制备与应用的发展趋势[J]. 化工进展, 2019, 38(05): 2252-2261.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1515
制备方法 | 优点 | 缺点 |
---|---|---|
等离子体法 | 产物纯度高、尺寸小、粒径分布均匀、形状与尺寸可控、制备过程对环境友好 | 设备要求高、规模化生产难度高 |
液相还原法 | 原料来源广泛、尺寸小、粒径分布均匀、形状与尺寸可控 | 环境污染、产率较低、分散性较差 |
电火花放电腐蚀法 | 设备简单、产物纯度高、粒径分布均匀 | 尺寸较大、产物易氧化 |
高能球磨法 | 操作简单、成本低、产量高、粒径可控 | 产物纯度较低、粒径分布不够均匀、粉末易发生团聚 |
制备方法 | 优点 | 缺点 |
---|---|---|
等离子体法 | 产物纯度高、尺寸小、粒径分布均匀、形状与尺寸可控、制备过程对环境友好 | 设备要求高、规模化生产难度高 |
液相还原法 | 原料来源广泛、尺寸小、粒径分布均匀、形状与尺寸可控 | 环境污染、产率较低、分散性较差 |
电火花放电腐蚀法 | 设备简单、产物纯度高、粒径分布均匀 | 尺寸较大、产物易氧化 |
高能球磨法 | 操作简单、成本低、产量高、粒径可控 | 产物纯度较低、粒径分布不够均匀、粉末易发生团聚 |
1 | VOISIN C , FATTI N D , CHRISTOFILOS D ,et al . Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles[J]. Journal of Physical Chemistry B,2017,105(12):2264-2280. |
2 | ARAKHA M ,JHA S . Synthesis and characterization of nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2018,322(8):1015-1019. |
3 | FLAURAUD V , MASTRANGELI M , BERNASCONI G D ,et al . Nanoscale topographical control of capillary assembly of nanoparticles[J]. Nature Nanotechnology,2017,12(1):73-80. |
4 | GONZALEZ I , JESUS D , CANIZALES E ,et al . Comparison of the surface state of Ni nanoparticles used for methane catalytic decomposition[J]. Journal of Physical Chemistry C,2016,116(40):21577-21587. |
5 | WANG C , ZHANG X M , QIAN X F ,et al . Preparation of nanocrystalline nickel powders through hydrothermal-reduction method[J]. Materials Research Bulletin,1998,33(12):1747-1751. |
6 | NAMDEO M , SAXENA S , TANKHIWALE R ,et al . Magnetic nanoparticles for drug delivery applications[J]. Journal of Nanoscience and Nanotechnology,2017,8(7):3247-3271. |
7 | ZHANG H , ZOU G , LIU L , et al . Synthesis of silver nanoparticles using large-area arc discharge and its application in electronic packaging[J]. Journal of Materials Science,2017,52(6):3375-3387. |
8 | GERSHMAN S , RAITSES Y . Unstable behavior of anodic arc discharge for synthesis of nanomaterials[J]. Journal of Physics D: Applied Physics,2016,49(34):345201-345222. |
9 | WEI Z , XIA T , BAI L ,et al . Efficient preparation for Ni nanopowders by anodic arc plasma[J]. Materials Letters,2006,60(6):766-770. |
10 | CHO Y S, MOON J W , CHUNG K C ,et al . Synthesis of nickel and copper nanopowders by plasma arc evaporation[J]. Journal of Korean Powder Metallurgy Institute,2013,20(6):411-424. |
11 | LIANG F , TANAKA M , CHOI S ,et al . Investigation of the relationship between arc-anode attachment mode and anode temperature for nickel nanoparticle production by a DC arc discharge[J]. Journal of Physics D: Applied Physics,2016,49(12):125201-125217. |
12 | BAI L , FAN J , PENG H ,et al . RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate[J]. Journal of Alloys and Compounds,2009,481(1):563-567. |
13 | CHAU J L H . Synthesis of Ni and bimetallic FeNi nanopowders by microwave plasma method[J]. Materials Letters,2007,61(13):2753-2756. |
14 | ABDEL-AAL E A , MALEKZADEH S M , RASHAD M M ,et al . Effect of synthesis conditions on preparation of nickel metal nanopowders via hydrothermal reduction technique[J]. Powder Technology,2007,171(1):63-68. |
15 | YU Y ,MA H, TIAN X X ,et al . Synthesis and electromagnetic absorption properties of micro-nano nickel powders prepared with liquid phase reduction method[J]. Journal of Advanced Dielectrics,2016,6(3):1650025-1650032. |
16 | TIENTONG J , GARCIA S , THURBER C ,et al . Synthesis of nickel and nickel hydroxide nanopowders by simplified chemical reduction[J]. Journal of Nanotechnology,2014(4):1-6. |
17 | TSENG K H , CHUNG M Y , CHIU J L . Suspension stability of nano-Au and nano-Ag colloids prepared by electrical spark discharge method[J]. Journal of Cluster Science,2017,28(100):1-16. |
18 | 李忠丽,李翔龙,文玉华,等 . 电火花腐蚀制备Ni粉[J]. 微细加工技术,2007,2(2):57-59. |
LI Z L , LI X L , WEN Y H ,et al . Preparation of nickel powder by spark-eroded method[J]. Microfabrication Technology,2007,2(2):57-59. | |
19 | LIU Y , ZHU K , LI X ,et al . Analysis of multi-scale Ni particles generated by ultrasonic aided electrical discharge erosion in pure water[J]. Advanced Powder Technology,2018,29(4):863-873. |
20 | ZHANG J , ZHANG C , LIU Z ,et al . High-performance ball-milled SiO x , anodes for lithium ion batteries[J]. Journal of Power Sources,2017,339:86-92. |
21 | PANIGRAHI B B ,DAS K, GODKHINDI M M . Dilatometry of ball milled nickel nano powder during non-isothermal sintering[J]. Science of Sintering,2007,39(1):25-29. |
22 | ZHAO Y , SHEN T D , ZHANG J . High P-T, nano-mechanics of polycrystalline nickel[J]. Nanoscale Research Letters,2007,2(10):476-491. |
23 | 路承杰,张振忠,周剑秋,等 . 高能球磨法制备纳米晶Ni粉的研究[J]. 铸造技术,2007,28(6):775-778. |
LU C J , ZHANG Z Z , ZHOU J Q ,et al . Preparation of nancrystalline nickel powders by high energy ball milling[J]. Foundry Technology,2007,28(6):775-778. | |
24 | CAI Z , WANG X , LUO B ,et al . Multiscale design of high-voltage multilayer energy-storage ceramic capacitors[J]. Journal of the American Ceramic Society,2018,101(4):1607-1615. |
25 | KISHI H , MIZUNO Y , CHAZONO H . Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives[J]. Japanese Journal of Applied Physics,2003,42(1):1-15. |
26 | WANG P , XU H , ZHU G ,et al . An efficient method to achieve MLCC miniaturization and ensure its reliability[J]. Journal of Materials Science Materials in Electronics,2016,28(5):1-5. |
27 | JEON J ,LEE H, PU B ,et al . Prediction of impedance characteristics of MLCC using multiconductor transmission line theory[J]. IEEE Transactions on Electromagnetic Compatibility,2016,58(6):1760-1771. |
28 | HIROSE S , USUI T , CROSSLEY S ,et al . Progress on electrocaloric multilayer ceramic capacitor development[J]. APL Materials,2016,4(6):27-43. |
29 | WANG S H , CHAI Y L ,LEE W H . A novel approach to sintering (Ba, Ca) (Ti, Zr)O3 multilayer ceramic capacitors with Ni electrodes[J]. Journal of the European Ceramic Society,2012,32(8):1711-1723. |
30 | 郭顺,王东新,李军义 . MLCC用超细镍粉的制备方法及发展趋势[J]. 材料导报,2012, 26(2):212-215. |
GUO S , WANG D X , LI J Y . Preparation methods and development tendency of ultrafine nickel powder used in MLCC[J]. Materials Review,2012, 26(2):212-215. | |
31 | GONG H , WANG X , TIAN Z ,et al . Interfacial diffusion behavior in Ni-BaTiO3 MLCCs with ultra-thin active layers[J]. Electronic Materials Letters, 2014,10(2):417-421. |
32 | SADA T , FUJIKAWA N . Analysis of insulation resistance degradation in Ni-BaTiO3 multilayer ceramic capacitors under highly accelerated life test[J]. Japanese Journal of Applied Physics,2017,56(10):104-108. |
33 | WANG P , XU H R , ZHU G S ,et al . An efficient method to achieve MLCC miniaturization and ensure its reliability[J]. Journal of Materials Science:Materials in Electronics,2016,28(5):1-5. |
34 | SALEEM M , SONG J S , JEONG S J ,et al . Dielectric response on microwave sintered BaTiO3, composite with Ni nanopowder and paste[J]. Materials Research Bulletin,2015,64:380-385. |
35 | DAS V, PADMANABAN S , VENKITUSAMY K ,et al . Recent advances and challenges of fuel cell based power system architectures and control-A review[J]. Renewable and Sustainable Energy Reviews,2017,73:10-18. |
36 | AKHAIRI M A F , KAMARUDIN S K . Catalysts in direct ethanol fuel cell (DEFC): an overview[J]. International Journal of Hydrogen Energy,2016,41(7):4214-4228. |
37 | LAN R , TAO S . Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cells[J]. Journal of Power Sources,2011,196(11):5021-5026. |
38 | KRISHNAMURTHY G , SHIVAKUMAR M S . Electroless deposition of nanosized nickel over graphite substrate with better coating coverage and catalytic activity for fuel cell application[J]. Journal of Applied Electrochemistry,2017,47(4):519-529. |
39 | GHASEMI M , WAN R W D , RAHIMNEJAD M ,et al . Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells[J]. International Journal of Hydrogen Energy,2013,38(22):9533-9540. |
40 | REN Z , WU Z , SONG W ,et al . Low temperature propane oxidation over Co3O4, based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability[J]. Applied Catalysis B:Environmental,2016,180:150-160. |
41 | KUMAR D , MANGALVEDEKAR H A , MAHAJAN S K . Nano-nickel catalytic dehydrogenation of ammonia borane[J]. Materials for Renewable and Sustainable Energy,2014,3(2):23-30. |
42 | WEI L I , ZHU J H , QI J H . Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis[J]. Journal of Fuel Chemistry and Technology,2007,35(2):176-180. |
43 | WRONSKI Z S , CARPENTER G J C , CZUJKO T ,et al . A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides[J]. International Journal of Hydrogen Energy,2011,36(1):1159-1166. |
44 | TSAI T Y , LI Y A , SU H C ,et al . Low temperature growth of carbon nanotubes using Ni nanopowder mixed with Ag-paste as catalyst[J]. Diamond and Related Materials,2008,17(4):594-597. |
45 | BAI Y , ZHANG J , YANG G , et al . Insight into the nanoparticle growth in supported Ni catalysts during the early stage of CO hydrogenation reaction: the important role of adsorbed CO molecules[J]. ACS Catalysis, 2018, 8: 6367-6374. |
46 | KHORT A , PODBOLOTOV K , GARCÍA R S ,et al . One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: the fuel effect[J]. Journal of Solid State Chemistry,2017,253:270-276. |
47 | EWING S J , LAN R , XU X X ,et al . Synthesis of dendritic nano-sized nickel for use as anode material in an alkaline membrane fuel cell[J]. Fuel Cells,2010,10(1):72-76. |
48 | LO C H, TSUNG T T , CHEN L C . Ni Nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS)[J]. Jsme International Journal,2005,48(4):750-755. |
49 | GAO R , JIANG Y , ABDELAZIZ S . All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers[J]. Optics Letters,2013,38(9):1539-1541. |
50 | JIANG Z , LI S F , ZHAO F Q ,et al . Research on the combustion properties of propellants with low content of nano metal powders[J]. Propellants Explosives Pyrotechnics,2010,31(2):139-147. |
51 | BROSTOW W , BROZYNSKI M , DATASHVILI T ,et al . Strong thermoplastic elastomers created using nickel nanopowder[J]. Polymer Bulletin,2011,67(8):1671-1696. |
52 | GAIN A K , CHAN Y C , YUNG W K C . Effect of nano Ni additions on the structure and properties of Sn-9Zn and Sn-Zn-3Bi solders in Au/Ni/Cu ball grid array packages[J]. Materials Science and Engineering B,2009,162(2):92-98. |
53 | QI H P , CAO H L , HUANG Y D . Synthesis of flowerlike nickel particles and their microwave absorbing properties[J]. Journal of Central South University,2014,21(8):3007-3012. |
54 | PARVEEN S , MISRA R , SAHOO S K . Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging[J]. Nanomedicine Nanotechnology Biology and Medicine,2012,8(2):147-166. |
55 | 郝晓光 . 多层陶瓷电容器用镍内电极浆料的现状与展望[J]. 电子元件与材料,2017,36(2):1-5. |
HAO X G . Current situation and development prospect of nickel inner electrode paste used in MLCC[J]. Electronic Components and Materials,2017,36(2):1-5. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |