Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2339-2346.DOI: 10.16085/j.issn.1000-6613.2018-1349
• Industrial catalysis • Previous Articles Next Articles
Xiaodong TANG1,2(),Zhiyu WANG2,Jingjing LI2,Dayong QING2,Manxi LENG3,Hongyu ZHANG3
Received:
2018-07-02
Revised:
2018-11-19
Online:
2019-05-05
Published:
2019-05-05
唐晓东1,2(),王治宇2,李晶晶2,卿大咏2,冷曼希3,张洪宇3
作者简介:
基金资助:
CLC Number:
Xiaodong TANG,Zhiyu WANG,Jingjing LI,Dayong QING,Manxi LENG,Hongyu ZHANG. Progress in catalytic C4 alkylation with liquid acid coupled systems[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2339-2346.
唐晓东,王治宇,李晶晶,卿大咏,冷曼希,张洪宇. 液体酸耦合体系催化C4烷基化研究进展[J]. 化工进展, 2019, 38(05): 2339-2346.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1349
序号 | ILs | Acid | ILs∶ Acid (m/m) | | C8选择性(质量分数)/% | TMP /DMH | 参考文献 |
---|---|---|---|---|---|---|---|
1 | [EMIM]HSO4 | TFOH | 11.1∶88.9 | >96.0 | 56.0 | 10.5 | [ |
2 | [OMIM]HSO4 | H2SO4 | 16.0∶84.0 | 98.0 | 51.3 | 6.6 | [ |
3 | [OMIM]HSO4 | TFOH | 23.7∶76.3 | 96.3 | 75.8 | 6.8 | [ |
4 | [MBSIM]OTf | H2SO4 | 46.7∶53.3 | 91.3 | 41.0 | 3.8 | [ |
5 | [MBSIM]OTf | TFOH | 48.3∶51.7 | 95.2 | 64.7 | 5.1 | [ |
6 | [MBSIM]OTf | CH3COOH | 60.0∶40.0 (v/v) | 91.8 | 67.1 | 4.1 | [ |
序号 | ILs | Acid | ILs∶ Acid (m/m) | | C8选择性(质量分数)/% | TMP /DMH | 参考文献 |
---|---|---|---|---|---|---|---|
1 | [EMIM]HSO4 | TFOH | 11.1∶88.9 | >96.0 | 56.0 | 10.5 | [ |
2 | [OMIM]HSO4 | H2SO4 | 16.0∶84.0 | 98.0 | 51.3 | 6.6 | [ |
3 | [OMIM]HSO4 | TFOH | 23.7∶76.3 | 96.3 | 75.8 | 6.8 | [ |
4 | [MBSIM]OTf | H2SO4 | 46.7∶53.3 | 91.3 | 41.0 | 3.8 | [ |
5 | [MBSIM]OTf | TFOH | 48.3∶51.7 | 95.2 | 64.7 | 5.1 | [ |
6 | [MBSIM]OTf | CH3COOH | 60.0∶40.0 (v/v) | 91.8 | 67.1 | 4.1 | [ |
序号 | ILs | Acid | ILs∶Acid | (质量分数)/% | C8选择性 (质量分数)/% | TMP/DMH | RON | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | [EMIM]HSO4 | H2SO4 | 11.1∶88.9(质量比) | >96.0 | 56.8 | 11.3 | — | [ |
2 | [BMIM]HSO4 | H2SO4 | 11.1∶88.9(质量比) | >96.0 | 58.9 | 6.2 | — | [ |
3 | [OMIM]HSO4 | H2SO4 | 11.1∶88.9(质量比) | >96.0 | 55.2 | 6.7 | — | [ |
4 | [BMIM]HSO4 | H2SO4 | 20.9∶79.1(质量比) | 90.4 | 41.0 | 7.9 | — | [ |
5 | [OMIM]HSO4 | H2SO4 | 16.0∶84.0(质量比) | 98.0 | 51.3 | 6.6 | — | [ |
6 | [DMIPA]HSO4 | TFOH | 15.0∶85.0 (体积比) | ≈100.0 | 88.9 | 12.1 | 97.4 | [ |
7 | [MDEA]HSO4 | TFOH | 15.0∶85.0 (体积比) | ≈100.0 | 92.1 | 12.0 | 97.8 | [ |
8 | [DEEA]HSO4 | TFOH | 15.0∶85.0 (体积比) | ≈100.0 | 87.3 | 13.5 | 97.4 | [ |
9 | [DMEA]HSO4 | TFOH | 15.0∶85.0 (体积比) | ≈100.0 | 89.6 | 12.9 | 97.7 | [ |
10 | [MEA]HSO4 | TFOH | 25.0∶75.0 (体积比) | ≈100.0 | 87.9 | 10.4 | 97.0 | [ |
11 | [TEA]HSO4 | TFOH | 25.0:75.0 (体积比) | ≈100.0 | 91.5 | 13.5 | 98.0 | [ |
序号 | ILs | Acid | ILs∶Acid | (质量分数)/% | C8选择性 (质量分数)/% | TMP/DMH | RON | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | [EMIM]HSO4 | H2SO4 | 11.1∶88.9(质量比) | >96.0 | 56.8 | 11.3 | — | [ |
2 | [BMIM]HSO4 | H2SO4 | 11.1∶88.9(质量比) | >96.0 | 58.9 | 6.2 | — | [ |
3 | [OMIM]HSO4 | H2SO4 | 11.1∶88.9(质量比) | >96.0 | 55.2 | 6.7 | — | [ |
4 | [BMIM]HSO4 | H2SO4 | 20.9∶79.1(质量比) | 90.4 | 41.0 | 7.9 | — | [ |
5 | [OMIM]HSO4 | H2SO4 | 16.0∶84.0(质量比) | 98.0 | 51.3 | 6.6 | — | [ |
6 | [DMIPA]HSO4 | TFOH | 15.0∶85.0 (体积比) | ≈100.0 | 88.9 | 12.1 | 97.4 | [ |
7 | [MDEA]HSO4 | TFOH | 15.0∶85.0 (体积比) | ≈100.0 | 92.1 | 12.0 | 97.8 | [ |
8 | [DEEA]HSO4 | TFOH | 15.0∶85.0 (体积比) | ≈100.0 | 87.3 | 13.5 | 97.4 | [ |
9 | [DMEA]HSO4 | TFOH | 15.0∶85.0 (体积比) | ≈100.0 | 89.6 | 12.9 | 97.7 | [ |
10 | [MEA]HSO4 | TFOH | 25.0∶75.0 (体积比) | ≈100.0 | 87.9 | 10.4 | 97.0 | [ |
11 | [TEA]HSO4 | TFOH | 25.0:75.0 (体积比) | ≈100.0 | 91.5 | 13.5 | 98.0 | [ |
序号 | ILs | Acid | ILs∶ Acid (质量比) | (质量分数)/% | C8选择性 (质量分数)/% | TMP/DMH | RON | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | [BMIM]HSO4-CuSO4 | H2SO4 | 11.1∶88.9 | >96 | 77.8 | 4.8 | — | [ |
2 | [EMIM]HSO4-CuCl | H2SO4 | 11.1∶88.9 | >96 | 84.4 | 14.3 | 99.0 | [ |
3 | [Et3NH]HSO4-CuCl | H2SO4 | 11.1∶88.9 | >96 | 83.5 | 12.3 | 98.7 | [ |
4 | [EMIM]OTf-CuCl | TFOH | 11.1∶88.9 | >96 | 84.9 | 15.0 | 99.1 | [ |
5 | [EMIM]Tf2N-Cu(OTf)2 | TFOH | 11.1∶88.9 | >96 | 80.6 | 8.5 | 97.1 | [ |
6 | [Et3NH]Cl-1.8AlCl3-0.5CuCl | — | — | — | 71.4 | 5.5 | 93.1 | [ |
7 | [BMIM]Cl-1.8AlCl3-0.5CuCl | — | — | — | 76.6 | 6.8 | 94.8 | [ |
8 | NMA-AlCl3-CuCl | — | — | — | 94.65 | 15.0 | 98.4 | [ |
序号 | ILs | Acid | ILs∶ Acid (质量比) | (质量分数)/% | C8选择性 (质量分数)/% | TMP/DMH | RON | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | [BMIM]HSO4-CuSO4 | H2SO4 | 11.1∶88.9 | >96 | 77.8 | 4.8 | — | [ |
2 | [EMIM]HSO4-CuCl | H2SO4 | 11.1∶88.9 | >96 | 84.4 | 14.3 | 99.0 | [ |
3 | [Et3NH]HSO4-CuCl | H2SO4 | 11.1∶88.9 | >96 | 83.5 | 12.3 | 98.7 | [ |
4 | [EMIM]OTf-CuCl | TFOH | 11.1∶88.9 | >96 | 84.9 | 15.0 | 99.1 | [ |
5 | [EMIM]Tf2N-Cu(OTf)2 | TFOH | 11.1∶88.9 | >96 | 80.6 | 8.5 | 97.1 | [ |
6 | [Et3NH]Cl-1.8AlCl3-0.5CuCl | — | — | — | 71.4 | 5.5 | 93.1 | [ |
7 | [BMIM]Cl-1.8AlCl3-0.5CuCl | — | — | — | 76.6 | 6.8 | 94.8 | [ |
8 | NMA-AlCl3-CuCl | — | — | — | 94.65 | 15.0 | 98.4 | [ |
1 | 高步良 . 高辛烷值汽油组分生产技术[M]. 北京: 中国石化出版社,2006: 20-21. |
GAO B L . High octane gasoline component production technology[M]. Beijing: China Petrochemical Press,2006: 20-21. | |
2 | 于兆臣, 田文君 . FCC汽油生产国Ⅵ汽油工艺路线的工业应用[J]. 炼油技术与工程, 2017, 47(8): 11-15. |
YU Z C , TIAN W J . Industrial application of process route of FCC gasoline producing GUO Ⅵ gasoline[J]. Refining Technology and Engineering, 2017, 47(8): 11-15. | |
3 | 王傲运 . 离子材料协同酸催化C4烷基化反应研究[D]. 石家庄: 河北科技大学, 2016. |
WANG A Y . Ionic liquid material and acid synergistically catalyzed C4 alkylation[D]. Shijiazhuang: Hebei University of Science and Technology, 2016. | |
4 | 杨为民 . 碳四烃转化与利用技术研究进展及发展前景[J]. 化工进展, 2015, 34(1): 1-9. |
YANG W M . Progress and perspectives on conversion and utilization of C4 hydrocarbons[J]. Chemical Industry and Engineering Progress, 2015, 34(1): 1-9. | |
5 | 彭凯, 张成喜, 李永祥, 等 . 异丁烷/丁烯烷基化固体酸催化剂的再生方法研究进展[J]. 化工进展, 2015, 34(9): 3296-3302. |
PENG K , ZHANG C X , LI Y X , et al . Advances in regeneration methods of solid acid catalyst for isobutane/butene alkylation[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 1-9. | |
6 | BUI T L T, KORTH W , ASCHAUER S , et al . Alkylation of isobutane with 2-butene using ionic liquids as catalyst[J]. Green Chemistry, 2009, 11(12): 1961-1967. |
7 | 闵恩泽, 李成岳 . 绿色石化技术的科学与工程基础[M]. 北京: 中国石化出版社, 2002: 298-311. |
MIN E Z , LI C Y . Science and engineering foundation of green petrochemical technology[M]. Beijing: China Petrochemical Press, 2002: 298-311. | |
8 | GAN P X , TANG S W . Research progress in ionic liquids catalyzed isobutane/butene alkylation[J]. Chinese Journal of Chemical Engineering, 2016, 24(11): 1497-1504. |
9 | OLAH G A , BATAMACK P , DEFFIEUX D , et al . Acidity dependence of the trifluoromethanesulfonic acid catalyzed isobutane/isobutylene alkylation modified with trifluoroacetic acid or water[J]. Applied Catalysis A: General, 1996, 146(1): 107-117. |
10 | REN H L , ZHAO G Y , ZHANG S J , et al . Triflic acid catalyzed isobutane alkylation with trifluoroethanol as a promoter[J]. Catalysis Communications, 2012, 18(18): 85-88. |
11 | ZHAO Z B , SUN W D , YANG X G , et al . Study of the catalytic behaviors of concentrated heteropolyacid solution.I. A novel catalyst for isobutane alkylation with butenes[J]. Catalysis Letters, 2000, 65(1/2/3): 115-121. |
12 | 赵振波 . 异丁烷-丁烯烷基化杂多酸-醋酸催化机理[J]. 物理化学学报, 2000, 16(7): 613-620. |
ZHAO Z B . Active components and mechanism of Isobutane alkylation with butenes in the catalytic system of HPAs+AcOH[J]. Acta Physico-Chimica sinica, 2000, 16(7): 613-620. | |
13 | 杨美, 钟向宏, 陈群 . 离子液体催化二氧化碳合成环状碳酸酯的研究进展[J]. 化工进展, 2017, 36(9): 3300-3308. |
YANG M , ZHONG X H , CHEN Q . Recent progress of the synthesis of cyclic carbonates from CO2 and epoxides catalyzed by ionic liquids[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3300-3308. | |
14 | 李海方 . 离子液体酸催化异丁烷烷基化反应的研究[D]. 石家庄: 河北科技大学, 2013. |
LI H F . Study on isobutane alkylation utilizing ionic liquid/acid as catalyst[D]. Shijiazhuang: Hebei University of Science and Technology, 2013. | |
15 | 孟祥海, 张睿, 刘海燕, 等 . 复合离子液体碳四烷基化技术开发与应用[J]. 中国科学: 化学, 2018 (4): 387-396. |
MENG X H , ZHANG R , LIU H Y , et al . Development and application of composite ionic liquid catalyzed isobutane alkylation technology[J]. Scientia Sinica Chimica, 2018 (4): 387-396. | |
16 | 胡静, 张涛, 张帅, 等 . [BMim][HSO4]/H2SO4二元体系的黏度及其表面张力[J]. 石油化工, 2017, 46(9): 1161-1167. |
HU J , ZHANG T , ZHANG S , et al . Viscosity and surface tensions of [BMim][HSO4]/H2SO4 binary system[J]. Petrochemical Technology, 2017, 46(9): 1161-1167. | |
17 | CONG Y , LIU Y , HU R . Isobutane/2-butene alkylation catalyzed by strong acids in the presence of ionic liquid additives[J]. Liquid Fuels Technology, 2014, 32(16): 1981-1987. |
18 | TANG S W , SCURTO A M , SUBRAMANIAM B . Improved 1-butene/isobutane alkylation with acidic ionic liquids and tunable acid/ionic liquid mixtures[J]. Journal of Catalysis, 2009, 268(2): 243-250. |
19 | 刘鹰, 胡瑞生, 刘贵丽, 等 . 酸性离子液体催化的异丁烷/丁烯烷基化反应研究[J]. 分子催化, 2010, 24(3): 217-221. |
LIU Y , HU R S , LIU G L , et al . Study on the alkylation of isobutane/butene in acidic ionic liquids[J]. Journal of Molecular Catalysis, 2010, 24(3): 217-221. | |
20 | ZHANG Y , ZHANG T , GAN P X , et al . Solubility of isobutane in ionic liquids[BMIm][PF6], [BMIm][BF4], and [BMIm][Tf2N][J]. Journal of Chemical & Engineering Data, 2015, 60(6): 1709-1714. |
21 | CUI P , ZHAO G Y , REN H L , et al . Ionic liquid enhanced alkylation of iso-butane and 1-butene[J]. Catalysis Today, 2013, 200(1): 30-35. |
22 | ZHENG W Z , WANG H Y , XIE W X , et al . Understanding interfacial behaviors of isobutane alkylation with C4 olefin catalyzed by sulfuric acid or ionic liquids[J]. AIChE Journal, 2017, 64(3): 958-959. |
23 | WANG P , WANG D X , XU C M , et al . DFT calculations of the alkylation reaction mechanisms of isobutane and 2-butene catalyzed by Brönsted acids[J]. Applied Catalysis A: General, 2007, 332(1): 22-26. |
24 | XING X Q , ZHAO G Y , CUI J Z , et al . Isobutane alkylation using acidic ionic liquid catalysts[J]. Catalysis Communications, 2012, 26(26): 68-71. |
25 | 张锁江, 刘瑞霞, 赵国英, 等 . 一种硫酸和离子液体复合催化剂催化生产烷基化汽油的方法: CN106939173A[P].2017-07-11. |
ZHANG S J , LIU R X , ZHAO G Y , et al . Method for catalyzing production of alkylated gasoline by using a composite catalyst of sulfuric acid and ionic liquid: CN106939173A[P]. 2017-07-11. | |
26 | ZHANG H H , LIU R X , YANG Z Q , et al . Alkylation of isobutane/butene promoted by fluoride-containing ionic liquids[J]. Fuel, 2018, 211: 233-240. |
27 | 张锁江, 周志茂, 杨飞飞, 等 . 一种含离子液体和硝酸的混酸体系催化合成烷基化油的方法: CN106010636A[P]. 2016-10-12. |
ZHANG S J , ZHOU Z M , YANG F F , et al . Method for synthesizing alkylated oil by mixed acid system containing ionic liquid and nitric acid: CN106010636A[P]. 2016-10-12. | |
28 | WANG A Y , ZHAO G Y , LIU F F , et al . Anionic clusters enhanced catalytic performance of protic acid ionic liquids for isobutane alkylation[J]. Industrial & Engineering Chemistry Research, 2016, 55(30): 8271-8280. |
29 | HUANG Q , ZHAO G Y , ZHANG S J , et al . Improved catalytic lifetime of H2SO4 for isobutane alkylation with trace amount of ionic liquids buffer[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1464-1469. |
30 | ZHENG W Z , HUANG C Z , SUN W Z ,et al . Microstructures of the sulfonic-acid-functionalized ionic liquid/sulfuric acid and their interactions: a perspective from the isobutane alkylation[J]. Journal of Physical Chemistry B, 2018, 122(4): 1460-1470. |
31 | 卢丹, 赵国英, 任保增, 等 . 醚基功能化离子液体合成及催化烷基化反应[J]. 化工学报, 2015, 66(7): 2481-2487. |
LU D , ZHAO G Y , REN B Z , et al . Isobutane alkylation catalyzed by ether functionalized ionic liquids[J]. CIESC Journal, 2015, 66(7): 2481-2487. | |
32 | YU F L , LI G X , GU Y L , et al . Preparation of alkylate gasoline in polyether-based acidic ionic liquids[J]. Catalysis Today, 2018, 310: 141-145. |
33 | 刘鹰, 孙宏娟, 丛迎楠, 等 . Cu对离子液体异丁烷/丁烯烷基化反应选择性的影响研究[J]. 燃料化学学报, 2014, 42(8): 1003-1009. |
LIU Y , SUN H J , CONG Y N , et al . Study on the selectivity of isobutane/2-butene alkylation catalyzed by ionic liquid with Cu compound[J]. Journal of Fuel Chemistry and Technology, 2014, 42(8): 1003-1009. | |
34 | HU P C , WANG Y D , MENG X H , et al . Isobutane alkylation with 2-butene catalyzed by amide-AlCl3-based ionic liquid analogues[J]. Fuel, 2017, 189: 203-209. |
35 | LIU Y , LI R , SUN H J , et al . Effects of catalyst composition on the ionic liquid catalyzed isobutane/2-butene alkylation[J]. Journal of Molecular Catalysis A Chemical, 2015, 398: 133-139. |
36 | MA H, ZHANG R , MENG X H , et al . Solid formation during composite-ionic-liquid-catalyzed isobutane alkylation[J]. Energy & Fuels, 2014, 28(8): 5389-5395. |
37 | WANG H , MENG X Z , ZHAO G Y , et al . Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production[J]. Green Chemistry, 2017, 19(6): 1462-1489. |
[1] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[2] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[3] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[4] | WU Heping, CAO Ning, XU Yuanyuan, CAO Yunbo, LI Yudong, YANG Qiang, LU Hao. Rapid separation of hydrofluoric acid and alkylated oil [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2845-2853. |
[5] | XIA Shaobo, DUAN Lu, WANG Jianpeng, JI Renshan. Effect of water content of fly ash on the performance of coupling reinforced electrostatic-fabric integrated precipitator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2101-2108. |
[6] | WU Weixiong, XIE Shiwei, MA Ruixin, LIU Jizhen, WANG Shuangfeng, RAO Zhonghao. Research progress of solid-liquid/gas-liquid multiphase coupling thermal control technology [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1143-1154. |
[7] | GUO Zhipeng, BU Xianbiao, LI Huashan, GONG Yulie, WANG Lingbao. Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 711-721. |
[8] | LIU Yanhui, ZHOU Mingfang, MA Ming, WANG Kai, TAN Tianwei. Recent advances on the bio-fixation of CO2 driven by renewable energy [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 1-15. |
[9] | CHEN Yu, LIU Chong, QIU Yuhui, BI Zixin, MU Tiancheng. Ionic liquids and deep eutectic solvents for green recycle of spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 485-496. |
[10] | DONG Kun, ZHAO Xu, YANG Fuxin, TAN Houzhang, LEI Yanzhou, CHEN Zhanjun. Effects of calcium-based additives on sulfur release during decoupling combustion of different coals [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 595-605. |
[11] | SHI Xuan, YANG Dongyuan, HU Haobin, WANG Jiaofei, ZHANG Zhuangzhuang, HE Jianxun, DAI Chengyi, MA Xiaoxun. One-step preparation of toluene/xylene from benzene and syngas over ZnAlCrO x &HZSM-5 bifunctional catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 247-259. |
[12] | HAN Xuan, WANG Lihong, BAI Xueyuan, YI Weiming, LI Yongjun, LI Zhihe, ZHANG Andong. Preparation of dealkalized red mud catalysts and its effect on bio-oil composition of corn straw catalytic pyrolysis [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4723-4732. |
[13] | BAI Jingang, YUAN Zhengji, LIU Yu, ZHANG Yishi, LYU Xifeng. Fabrication and thermal properties of decanoic acid-paraffin/graphene aerogel form-stable phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4441-4448. |
[14] | ZHU Tingting, SU Zhongxian, ZHAO Tianhang, LIU Yiwen. Treatment of antibiotic wastewater enhanced by zero-valent iron and its coupling technology [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4513-4529. |
[15] | SHAN Qingwen, ZHANG Juan, WANG Yajuan, LIU Wenqiang. Synthesis of polymeric ionic liquid and its performance on adsorption desulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4571-4579. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |