Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1259-1268.DOI: 10.16085/j.issn.1000-6613.2018-1053
Previous Articles Next Articles
Guizhuan XU1,2(),Binglin CHEN1,2,Shaohao ZHANG1,2,Zhangbin ZHENG1,2,Yuqing YANG1,Chen WANG1,2
Received:
2018-05-22
Revised:
2018-07-17
Online:
2019-03-05
Published:
2019-03-05
徐桂转1,2(),陈炳霖1,2,张少浩1,2,郑张斌1,2,杨雨青1,王晨1,2
作者简介:
基金资助:
CLC Number:
Guizhuan XU,Binglin CHEN,Shaohao ZHANG,Zhangbin ZHENG,Yuqing YANG,Chen WANG. A review: research progress in production of 5-ethoxymethylfurfural[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1259-1268.
徐桂转,陈炳霖,张少浩,郑张斌,杨雨青,王晨. 生物质转化制备5-乙氧基甲基糠醛液体燃料研究进展[J]. 化工进展, 2019, 38(03): 1259-1268.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1053
序号 | 底物 | 催化剂 | 反应介质 | 温度/℃ | 时间 | 产率/% | 文献 |
---|---|---|---|---|---|---|---|
1 | 菊粉 | 7.7%H2SO4 | 乙醇 | 130 | 30min | 29 | [ |
2 | 果糖 | 0.1%H2SO4 | 乙醇 | 120 | 1h | 79.33 | [ |
3 | 葡萄糖 | 0.1%H2SO4 | 乙醇 | 210 | 14min | 21.78 | [ |
4 | 纤维素 | 0.1%H2SO4 | 乙醇 | 200 | 80min | 14.35 | [ |
5 | 木薯 | 0.52%H2SO4 | 乙醇 | 200 | 6h | 2.05 | [ |
6 | HMF | 0.14%H3PO4 | 乙醇 | 90 | 2h | 1.7 | [ |
7 | HMF | 0.18%H2SO4 | 乙醇 | 90 | 2h | 79 | [ |
8 | 果糖 | 0.1%H2SO4 | 乙醇 | 120 | 3h | 66.29 | [ |
9 | HMF | 10.9%H2SO4 | 乙醇 | 70 | 18h | 79.8 | [ |
序号 | 底物 | 催化剂 | 反应介质 | 温度/℃ | 时间 | 产率/% | 文献 |
---|---|---|---|---|---|---|---|
1 | 菊粉 | 7.7%H2SO4 | 乙醇 | 130 | 30min | 29 | [ |
2 | 果糖 | 0.1%H2SO4 | 乙醇 | 120 | 1h | 79.33 | [ |
3 | 葡萄糖 | 0.1%H2SO4 | 乙醇 | 210 | 14min | 21.78 | [ |
4 | 纤维素 | 0.1%H2SO4 | 乙醇 | 200 | 80min | 14.35 | [ |
5 | 木薯 | 0.52%H2SO4 | 乙醇 | 200 | 6h | 2.05 | [ |
6 | HMF | 0.14%H3PO4 | 乙醇 | 90 | 2h | 1.7 | [ |
7 | HMF | 0.18%H2SO4 | 乙醇 | 90 | 2h | 79 | [ |
8 | 果糖 | 0.1%H2SO4 | 乙醇 | 120 | 3h | 66.29 | [ |
9 | HMF | 10.9%H2SO4 | 乙醇 | 70 | 18h | 79.8 | [ |
序号 | 底物 | 催化剂 | 反应介质 | 温度/℃ | 时间 | 产物 | 产率/% | 文献 |
---|---|---|---|---|---|---|---|---|
1 | HMF | AlCl3 | 乙醇 | 100 | 5h | EMF | 92.9 | [ |
2 | 果糖 | AlCl3 | 乙醇 | 100 | 11h | EMF | 71.2 | [ |
3 | 葡萄糖 | AlCl3 | 乙醇 | 100 | 11h | EMF | 38.4 | [ |
4 | 菊粉 | AlCl3 | 乙醇 | 100 | 11h | EMF | 58.2 | [ |
5 | 淀粉 | AlCl3 | 乙醇 | 100 | 11h | EMF | 27.2 | [ |
6 | 木薯 | Al2(SO4)3 | 乙醇 | 200 | 6h | EMF | 0.36 | [ |
7 | 木薯 | Fe2(SO4)3 | 乙醇 | 200 | 6h | EMF | 3.01 | [ |
8 | 木薯 | NaHSO4 | 乙醇 | 200 | 6h | EMF | 4.43 | [ |
9 | 木薯 | MgSO4 | 乙醇 | 200 | 6h | EMF | 0.09 | [ |
10 | 木薯 | ZnSO4 | 乙醇 | 200 | 6h | EMF | 3.25 | [ |
11 | 木薯 | NiSO4 | 乙醇 | 200 | 6h | EMF | 11.4 | [ |
12 | 葡萄糖 | AlCl3 | 乙醇/水 | 160 | 15min | HMF和EMF | 57 | [ |
13 | 果糖 | FeCl3 | 乙醇/[Bmim]Cl | 100 | 4h | EMF | 30.1 | [ |
序号 | 底物 | 催化剂 | 反应介质 | 温度/℃ | 时间 | 产物 | 产率/% | 文献 |
---|---|---|---|---|---|---|---|---|
1 | HMF | AlCl3 | 乙醇 | 100 | 5h | EMF | 92.9 | [ |
2 | 果糖 | AlCl3 | 乙醇 | 100 | 11h | EMF | 71.2 | [ |
3 | 葡萄糖 | AlCl3 | 乙醇 | 100 | 11h | EMF | 38.4 | [ |
4 | 菊粉 | AlCl3 | 乙醇 | 100 | 11h | EMF | 58.2 | [ |
5 | 淀粉 | AlCl3 | 乙醇 | 100 | 11h | EMF | 27.2 | [ |
6 | 木薯 | Al2(SO4)3 | 乙醇 | 200 | 6h | EMF | 0.36 | [ |
7 | 木薯 | Fe2(SO4)3 | 乙醇 | 200 | 6h | EMF | 3.01 | [ |
8 | 木薯 | NaHSO4 | 乙醇 | 200 | 6h | EMF | 4.43 | [ |
9 | 木薯 | MgSO4 | 乙醇 | 200 | 6h | EMF | 0.09 | [ |
10 | 木薯 | ZnSO4 | 乙醇 | 200 | 6h | EMF | 3.25 | [ |
11 | 木薯 | NiSO4 | 乙醇 | 200 | 6h | EMF | 11.4 | [ |
12 | 葡萄糖 | AlCl3 | 乙醇/水 | 160 | 15min | HMF和EMF | 57 | [ |
13 | 果糖 | FeCl3 | 乙醇/[Bmim]Cl | 100 | 4h | EMF | 30.1 | [ |
序号 | 底物 | 催化剂 | 催化剂性质 | 反应介质 | 温度/℃ | 时间 | 产率/% | 文献 |
---|---|---|---|---|---|---|---|---|
1 | HMF | 30% K-10 clay-HPW | 比表面积117m2/g | 乙醇 | 100 | 10h | 91.5 | [ |
2 | 果糖 | 30% K-10 clay-HPW | 乙醇 | 100 | 10h | 61.5 | [ | |
3 | HMF | HPW | 乙醇 | 100 | 6h | 83.1 | [ | |
4 | HMF | HPW(0.051mmol H+) | 比表面积926m2/g;总孔容1.47cm3/g | 乙醇 | 90 | 2h | 80.9 | [ |
5 | HMF | HSiW(0.051mmol H+) | 乙醇 | 90 | 2h | 85.3 | [ | |
6 | HMF | HSiW(0.028mmol H+) | 乙醇 | 90 | 2h | 86.5 | [ | |
7 | HMF | 20%HSiW/M-Ns | 乙醇 | 90 | 2h | 82.7 | [ | |
8 | HMF | 40%HSiW/M-Ns | 乙醇 | 90 | 2h | 85.8 | [ | |
9 | HMF | 40%HSiW/M-Ns | 乙醇 | 90 | 4h | 84.1 | [ | |
10 | HMF | 60%HSiW/M-Ns | 乙醇 | 90 | 2h | 83.2 | [ | |
11 | HMF | [MIMBS]3PW12O40 | 乙醇 | 70 | 24h | 90.7 | [ | |
12 | 果糖 | [MIMBS]3PW12O40 | 乙醇 | 90 | 24h | 90.5 | [ | |
13 | 果糖 | HPW | 乙醇/DMSO① | 140 | 130min | 64 | [ | |
14 | 蔗糖 | HPW | 乙醇/DMSO | 140 | 130min | 28 | [ | |
15 | 菊粉 | HPW | 乙醇/DMSO | 140 | 130min | 54 | [ | |
16 | HMF | Fe3O4@SiO2-HPW | 比表面积27.6m2/g;孔容0.064cm3/g;平均孔径1.85 nm | 乙醇 | 100 | 11h | 84 | [ |
17 | HMF | Fe3O4@SiO2-HPW | 乙醇 | 100 | 24h | 55 | [ | |
18 | HMF | Ag1H2PW | 乙醇 | 100 | 10h | 88.7 | [ | |
19 | HMF | 40%MCM-41-HPW | 比表面积998.2m2/g;总孔容0.87cm3/g | 乙醇 | 100 | 12h | 83.4 | [ |
20 | 果糖 | 40%MCM-41-HPW | 乙醇 | 100 | 12h | 42.9 | [ | |
21 | 果糖 | H3PW12O40 | 乙醇/THF② | 130 | 30min | 76 | [ | |
22 | 蔗糖 | H3PW12O40 | 乙醇/THF | 130 | 30min | 33 | [ | |
23 | 菊粉 | H3PW12O40 | 乙醇/THF | 130 | 30min | 62 | [ |
序号 | 底物 | 催化剂 | 催化剂性质 | 反应介质 | 温度/℃ | 时间 | 产率/% | 文献 |
---|---|---|---|---|---|---|---|---|
1 | HMF | 30% K-10 clay-HPW | 比表面积117m2/g | 乙醇 | 100 | 10h | 91.5 | [ |
2 | 果糖 | 30% K-10 clay-HPW | 乙醇 | 100 | 10h | 61.5 | [ | |
3 | HMF | HPW | 乙醇 | 100 | 6h | 83.1 | [ | |
4 | HMF | HPW(0.051mmol H+) | 比表面积926m2/g;总孔容1.47cm3/g | 乙醇 | 90 | 2h | 80.9 | [ |
5 | HMF | HSiW(0.051mmol H+) | 乙醇 | 90 | 2h | 85.3 | [ | |
6 | HMF | HSiW(0.028mmol H+) | 乙醇 | 90 | 2h | 86.5 | [ | |
7 | HMF | 20%HSiW/M-Ns | 乙醇 | 90 | 2h | 82.7 | [ | |
8 | HMF | 40%HSiW/M-Ns | 乙醇 | 90 | 2h | 85.8 | [ | |
9 | HMF | 40%HSiW/M-Ns | 乙醇 | 90 | 4h | 84.1 | [ | |
10 | HMF | 60%HSiW/M-Ns | 乙醇 | 90 | 2h | 83.2 | [ | |
11 | HMF | [MIMBS]3PW12O40 | 乙醇 | 70 | 24h | 90.7 | [ | |
12 | 果糖 | [MIMBS]3PW12O40 | 乙醇 | 90 | 24h | 90.5 | [ | |
13 | 果糖 | HPW | 乙醇/DMSO① | 140 | 130min | 64 | [ | |
14 | 蔗糖 | HPW | 乙醇/DMSO | 140 | 130min | 28 | [ | |
15 | 菊粉 | HPW | 乙醇/DMSO | 140 | 130min | 54 | [ | |
16 | HMF | Fe3O4@SiO2-HPW | 比表面积27.6m2/g;孔容0.064cm3/g;平均孔径1.85 nm | 乙醇 | 100 | 11h | 84 | [ |
17 | HMF | Fe3O4@SiO2-HPW | 乙醇 | 100 | 24h | 55 | [ | |
18 | HMF | Ag1H2PW | 乙醇 | 100 | 10h | 88.7 | [ | |
19 | HMF | 40%MCM-41-HPW | 比表面积998.2m2/g;总孔容0.87cm3/g | 乙醇 | 100 | 12h | 83.4 | [ |
20 | 果糖 | 40%MCM-41-HPW | 乙醇 | 100 | 12h | 42.9 | [ | |
21 | 果糖 | H3PW12O40 | 乙醇/THF② | 130 | 30min | 76 | [ | |
22 | 蔗糖 | H3PW12O40 | 乙醇/THF | 130 | 30min | 33 | [ | |
23 | 菊粉 | H3PW12O40 | 乙醇/THF | 130 | 30min | 62 | [ |
序号 | 底物 | 催化剂 | 催化剂性质 | 反应介质 | 温度/℃ | 时间/h | 产率/% | 文献 |
---|---|---|---|---|---|---|---|---|
1 | HMF | Silica-SO3H | 乙醇 | 100 | 10 | 83.8 | [ | |
2 | 果糖 | Silica-SO3H | 乙醇 | 100 | 24 | 63.1 | [ | |
3 | HMF | 磺酸纤维素 | 硫含量0.56mmol/g | 乙醇 | 100 | 10 | 84.4 | [ |
4 | 果糖 | 磺酸纤维素 | 乙醇 | 100 | 12 | 72.5 | [ | |
5 | 果糖 | OMC-SO3H | [H+]含量为1.31mmol/g,比表面积515m2/g,孔容0.98cm3/g | 乙醇 | 140 | 24 | 55.7 | [ |
6 | 菊粉 | OMC-SO3H | 乙醇 | 140 | 24 | 53.6 | [ | |
7 | 蔗糖 | OMC-SO3H | 乙醇 | 140 | 24 | 26.8 | [ | |
8 | HMF | 10% Glu-Fe3O4-SO3H | 乙醇 | 80 | 12 | 28 | [ | |
9 | HMF | 20% Glu-Fe3O4-SO3H | 乙醇 | 80 | 8 | 70 | [ | |
10 | HMF | 30% Glu-Fe3O4-SO3H | 乙醇 | 80 | 2 | 92 | [ | |
11 | HMF | 50% Glu-Fe3O4-SO3H | 乙醇 | 80 | 2 | 92 | [ | |
12 | 果糖 | 30% Glu-Fe3O4-SO3H | 乙醇 | 80 | 24 | 55 | [ | |
13 | 果糖 | 50% Glu-Fe3O4-SO3H | 乙醇 | 80 | 24 | 81 | [ | |
14 | 葡萄糖 | 50% Glu-Fe3O4-SO3H | 乙醇/DMSO (体积比2∶8) | 140 | 48 | 27 | [ | |
15 | 菊粉 | 50% Glu-Fe3O4-SO3H | 乙醇/DMSO (体积比2∶8) | 100 | 24 | 85 | [ | |
16 | HMF | Fe3O4@C-SO3H | 硫含量1.38mmol/g,[H+]含量为1.40mmol/g,比表面积 29.9m2/g;孔容0.07cm3/g,孔径9.4nm | 乙醇 | 100 | 12 | 88.4 | [ |
17 | 果糖 | Fe3O4@C-SO3H | 乙醇 | 140 | 24 | 67.8 | [ | |
18 | 菊粉 | Fe3O4@C-SO3H | 乙醇 | 140 | 24 | 58.4 | [ | |
19 | 蔗糖 | Fe3O4@C-SO3H | 乙醇 | 140 | 24 | 33.2 | [ | |
20 | 果糖 | MIL-101-SO3H (100) | 乙醇 | 130 | 15 | 67.7 | [ | |
21 | 菊粉 | MIL-101-SO3H (100) | 乙醇 | 130 | 15 | 54.2 | [ |
序号 | 底物 | 催化剂 | 催化剂性质 | 反应介质 | 温度/℃ | 时间/h | 产率/% | 文献 |
---|---|---|---|---|---|---|---|---|
1 | HMF | Silica-SO3H | 乙醇 | 100 | 10 | 83.8 | [ | |
2 | 果糖 | Silica-SO3H | 乙醇 | 100 | 24 | 63.1 | [ | |
3 | HMF | 磺酸纤维素 | 硫含量0.56mmol/g | 乙醇 | 100 | 10 | 84.4 | [ |
4 | 果糖 | 磺酸纤维素 | 乙醇 | 100 | 12 | 72.5 | [ | |
5 | 果糖 | OMC-SO3H | [H+]含量为1.31mmol/g,比表面积515m2/g,孔容0.98cm3/g | 乙醇 | 140 | 24 | 55.7 | [ |
6 | 菊粉 | OMC-SO3H | 乙醇 | 140 | 24 | 53.6 | [ | |
7 | 蔗糖 | OMC-SO3H | 乙醇 | 140 | 24 | 26.8 | [ | |
8 | HMF | 10% Glu-Fe3O4-SO3H | 乙醇 | 80 | 12 | 28 | [ | |
9 | HMF | 20% Glu-Fe3O4-SO3H | 乙醇 | 80 | 8 | 70 | [ | |
10 | HMF | 30% Glu-Fe3O4-SO3H | 乙醇 | 80 | 2 | 92 | [ | |
11 | HMF | 50% Glu-Fe3O4-SO3H | 乙醇 | 80 | 2 | 92 | [ | |
12 | 果糖 | 30% Glu-Fe3O4-SO3H | 乙醇 | 80 | 24 | 55 | [ | |
13 | 果糖 | 50% Glu-Fe3O4-SO3H | 乙醇 | 80 | 24 | 81 | [ | |
14 | 葡萄糖 | 50% Glu-Fe3O4-SO3H | 乙醇/DMSO (体积比2∶8) | 140 | 48 | 27 | [ | |
15 | 菊粉 | 50% Glu-Fe3O4-SO3H | 乙醇/DMSO (体积比2∶8) | 100 | 24 | 85 | [ | |
16 | HMF | Fe3O4@C-SO3H | 硫含量1.38mmol/g,[H+]含量为1.40mmol/g,比表面积 29.9m2/g;孔容0.07cm3/g,孔径9.4nm | 乙醇 | 100 | 12 | 88.4 | [ |
17 | 果糖 | Fe3O4@C-SO3H | 乙醇 | 140 | 24 | 67.8 | [ | |
18 | 菊粉 | Fe3O4@C-SO3H | 乙醇 | 140 | 24 | 58.4 | [ | |
19 | 蔗糖 | Fe3O4@C-SO3H | 乙醇 | 140 | 24 | 33.2 | [ | |
20 | 果糖 | MIL-101-SO3H (100) | 乙醇 | 130 | 15 | 67.7 | [ | |
21 | 菊粉 | MIL-101-SO3H (100) | 乙醇 | 130 | 15 | 54.2 | [ |
序号 | 底物 | 催化剂 | 反应介质 | 温度/℃ | 时间 | 产率/% | 文献 |
---|---|---|---|---|---|---|---|
1 | 0.5mmol果糖 | 1g [C4mim][HSO4] | 乙醇(2.5mL) | 130 | 20min | 79 | [ |
2 | 0.5mmol果糖 | 1g [C1im][HSO4] | 乙醇(2.5mL) | 130 | 20min | 73 | [ |
3 | 0.5mmol果糖 | 1g [C2mim][HSO4] | 乙醇(2.5mL) | 130 | 20min | 54 | [ |
4 | 0.5mmol果糖 | 1g [C4mim][Cl] | 乙醇(2.5mL) | 130 | 20min | 0.2 | [ |
5 | 0.5mmol果糖 | 1g [C4mim][DMP] | 乙醇(2.5mL) | 130 | 20min | 2 | [ |
6 | 0.5mmol果糖 | 1g [C4mim][DEP] | 乙醇(2.5mL) | 130 | 20min | 4 | [ |
7 | 0.5mmol果糖 | 1g [C4mim][AC] | 乙醇(2.5mL) | 130 | 20min | 0 | [ |
8 | 0.5mmol果糖 | 1g [C4mim][AC] | 乙醇(2.5mL) | 130 | 20min | 0 | [ |
9 | 0.5mmol果糖 | 1g [C4mim][HSO4] | 乙醇(2.5mL) | 130 | 20min | 83 | [ |
10 | 0.5mmol果糖 | 1g [C4im][HSO4] | 乙醇(2.5mL) | 130 | 15min | 77 | [ |
11 | 0.5mmol果糖 | 1g [C2mim][HSO4] | 乙醇(2.5mL) | 130 | 30min | 81 | [ |
12 | HMF | Fe3O4@SiO2-SH-Im-HSO4 | 乙醇 | 100 | 12h | 89.6 | [ |
13 | 果糖 | Fe3O4@SiO2-SH-Im-HSO4 | 乙醇 | 120 | 24h | 60.4 | [ |
14 | 蔗糖 | Fe3O4@SiO2-SH-Im-HSO4 | 乙醇 | 120 | 24h | 34.4 | [ |
15 | 菊粉 | Fe3O4@SiO2-SH-Im-HSO4 | 乙醇 | 120 | 24h | 56.1 | [ |
16 | 0.09g 菊粉 | 1g [BMIM][HSO4] | 乙醇/水(2.5mL/0.02mL) | 130 | 30min | 77 | [ |
17 | 0.09g 菊粉 | 1g [EMIM][HSO4] | 乙醇/水(2.5mL/0.02mL) | 130 | 30min | 51 | [ |
18 | 0.09g 菊粉 | 1g [BMIM][HSO4] | 乙醇/水(2.5mL/0.02mL) | 130 | 30min | 63 | [ |
19 | 0.09g 菊粉 | 2.5g [BMIM][HSO4] | 乙醇(2.5g) | 130 | 30min | 77 | [ |
20 | 蔗糖 | 1g [EMIM][HSO4] | 乙醇/水(2.5mL/0.02mL) | 130 | 30min | 43 | [ |
序号 | 底物 | 催化剂 | 反应介质 | 温度/℃ | 时间 | 产率/% | 文献 |
---|---|---|---|---|---|---|---|
1 | 0.5mmol果糖 | 1g [C4mim][HSO4] | 乙醇(2.5mL) | 130 | 20min | 79 | [ |
2 | 0.5mmol果糖 | 1g [C1im][HSO4] | 乙醇(2.5mL) | 130 | 20min | 73 | [ |
3 | 0.5mmol果糖 | 1g [C2mim][HSO4] | 乙醇(2.5mL) | 130 | 20min | 54 | [ |
4 | 0.5mmol果糖 | 1g [C4mim][Cl] | 乙醇(2.5mL) | 130 | 20min | 0.2 | [ |
5 | 0.5mmol果糖 | 1g [C4mim][DMP] | 乙醇(2.5mL) | 130 | 20min | 2 | [ |
6 | 0.5mmol果糖 | 1g [C4mim][DEP] | 乙醇(2.5mL) | 130 | 20min | 4 | [ |
7 | 0.5mmol果糖 | 1g [C4mim][AC] | 乙醇(2.5mL) | 130 | 20min | 0 | [ |
8 | 0.5mmol果糖 | 1g [C4mim][AC] | 乙醇(2.5mL) | 130 | 20min | 0 | [ |
9 | 0.5mmol果糖 | 1g [C4mim][HSO4] | 乙醇(2.5mL) | 130 | 20min | 83 | [ |
10 | 0.5mmol果糖 | 1g [C4im][HSO4] | 乙醇(2.5mL) | 130 | 15min | 77 | [ |
11 | 0.5mmol果糖 | 1g [C2mim][HSO4] | 乙醇(2.5mL) | 130 | 30min | 81 | [ |
12 | HMF | Fe3O4@SiO2-SH-Im-HSO4 | 乙醇 | 100 | 12h | 89.6 | [ |
13 | 果糖 | Fe3O4@SiO2-SH-Im-HSO4 | 乙醇 | 120 | 24h | 60.4 | [ |
14 | 蔗糖 | Fe3O4@SiO2-SH-Im-HSO4 | 乙醇 | 120 | 24h | 34.4 | [ |
15 | 菊粉 | Fe3O4@SiO2-SH-Im-HSO4 | 乙醇 | 120 | 24h | 56.1 | [ |
16 | 0.09g 菊粉 | 1g [BMIM][HSO4] | 乙醇/水(2.5mL/0.02mL) | 130 | 30min | 77 | [ |
17 | 0.09g 菊粉 | 1g [EMIM][HSO4] | 乙醇/水(2.5mL/0.02mL) | 130 | 30min | 51 | [ |
18 | 0.09g 菊粉 | 1g [BMIM][HSO4] | 乙醇/水(2.5mL/0.02mL) | 130 | 30min | 63 | [ |
19 | 0.09g 菊粉 | 2.5g [BMIM][HSO4] | 乙醇(2.5g) | 130 | 30min | 77 | [ |
20 | 蔗糖 | 1g [EMIM][HSO4] | 乙醇/水(2.5mL/0.02mL) | 130 | 30min | 43 | [ |
1 | LI H , FANG Z , SMITH R L , et al . Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials[J]. Progress in Energy & Combustion Science, 2016, 55:98-194. |
2 | RAGAUSKAS A J , WILLIAMS C K , DAVISON B H , et al . The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760):484-489. |
3 | CORMA A , IBORRA S , VELTY A . Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 38(36):2411-2502. |
4 | LIU B , GOU Z Z , LIU A Q , et al . Synthesis of furan compounds from HMF and fructose catalyzed by aluminum-exchanged K-10 clay[J]. Journal of Industrial & Engineering Chemistry, 2015, 21(1):338-339. |
5 | VIIL I , BREDIHHIN A , MÄEORG U , et al . Preparation of potential biofuel 5-ethoxymethylfurfural and other 5-alkoxymethylfurfurals in the presence of oil shale ash[J]. RSC Advances, 2014, 4(11):5689-5693. |
6 | 刘波, 张岩, 马明, 等 . 平台化合物5-乙氧甲基糠醛的最新研究进展[J]. 山东化工, 2015, 44(9): 49-52. |
LIU B , ZHANG Y , MA M, et al . Advances in bio-based platform chemical 5-ethoxymethylfurfural[J]. Shandong Chemical Industry, 2015, 44(9): 49-52. | |
7 | 陈涛, 彭林才 . 新型生物燃料5-乙氧基甲基糠醛的合成进展[J]. 化学通报, 2018, 81(1): 45-51. |
CHEN T , PENG L C . Advances in the synthesis of novel biofuel 5-ethoxymethylfurfural[J]. Chemistry, 2018, 81(1): 45-51. | |
8 | HU L , LIN L , WU Z , et al . Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals[J]. Renewable & Sustainable Energy Reviews, 2017, 74:230-257. |
9 | KRAUS G A , GUNEY T . A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids[J]. Green Chemistry, 2012, 14(6):1593-1596. |
10 | GUO H X , DUEREH A , HIRAGA Y , et al . Perfect recycle and mechanistic role of hydrogen sulfate ionic liquids as additive in ethanol for efficient conversion of carbohydrates into 5-ethoxymethylfurfural[J]. Chemical Engineering Journal, 2017,323(9):287-294. |
11 | LI H , FANG Z , SMITH R L , et al . Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials[J]. Progress in Energy & Combustion Science, 2016, 55:98-194. |
12 | LIU A Q , LIU B , WANG Y M , et al . Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay[J]. Fuel, 2014, 117(1):68-73. |
13 | KUMARI P K , RAO B S , PADMAKAR D , et al . Lewis acidity induced heteropoly tungustate catalysts for the synthesis of 5-ethoxymethyl furfural from fructose and 5-hydroxymethylfurfural[J]. Molecular Catalysis, 2018, 448:108-115. |
14 | LIU B , ZHANG Z H , HUANG K C . Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose[J]. Cellulose, 2013, 20(4):2081-2089. |
15 | BALAKRISHNAN M , SACIA E R , BELL A . Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates[J]. Green Chemistry, 2012, 14(6):1626-1634. |
16 | LEW C M, RAJABBEIGI N , TSAPATSIS M . One-pot synthesis of 5-(ethoxymethyl)furfural from glucose using Sn-BEA and Amberlyst catalysts[J]. Industrial & Engineering Chemistry Research, 2012, 51(14): 5364- 5366. |
17 | LIU B , ZHANG Z H , HUANG K C , et al . Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl3 [J]. Fuel, 2013, 113(2): 625-631. |
18 | XU G Z , CHANG C , FANG S Q , et al . Cellulose reactivity in ethanol at elevate temperature and the kinetics of one-pot preparation of ethyl levulinate from cellulose[J]. Renewable Energy, 2015, 78: 583-589. |
19 | YIN S S , SUN J , LIU B , et al . Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates[J]. Journal of Materials Chemistry A, 2015, 3(9): 4992-4999. |
20 | CHEN T , PENG L C , YU X , et al . Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates[J]. Fuel, 2018, 219: 344-352. |
21 | BREDIHHIN A , MÄEORG U , VARES L . Evaluation of carbohydrates and lignocellulosic biomass from different wood species as raw material for the synthesis of 5-bromomethyfurfural[J]. Carbohydrate Research, 2013, 375(12): 63-67. |
22 | MASCAL M , NIKITIN E B . Direct, high-yield conversion of cellulose into biofuel[J]. Angewandte Chemie: International Edition, 2008,47(41): 7924-7926. |
23 | XU G Z , CHANG C , ZHU W N , et al . A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts[J]. Chemical Papers, 2013, 67(11):1355-1363. |
24 | LI H , ZHANG Q Y , RIISAGER A , et al . Catalytic valorization of cellulose and cellobiose with nanoparticles[J]. Current Nanoscience, 2015, 11(1):1-14. |
25 | 李凯 . 一锅法催化生物质制取5-乙氧基甲基糠醛试验研究[D]. 郑州: 河南农业大学, 2016. |
LI K . One-pot synthesis of 5-ethoxymethylfurfural from carbohydrate catalyzed[D]. Zhangzhou: Henan Agricultural University, 2016. | |
26 | DUTTA S , DE S, ALAM M I , et al . Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts[J]. Journal of Catalysis, 2012, 288(2): 8-15. |
27 | TAN J , LIU Q Y , CHEN L G , et al . Efficient production of ethyl levulinate from cassava over Al2(SO4)3 catalyst in ethanol-water system[J]. Journal of Energy Chemistry, 2017, 26(1): 115-120. |
28 | CHANG C , XU G X , JIANG X X . Production of ethyl levulinate by direct conversion of wheat straw in ethanol media[J]. Bioresource Technology, 2012, 121(10): 93-99. |
29 | SUN Y N , ZHANG Q Q , ZHANG P P , et al . Nitrogen-doped carbon-based acidic ionic liquid hollow nanospheres for efficient and selective conversion of fructose to 5-ethoxymethylfurfural and ethyl levulinate[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6771-6782. |
30 | TARABANKO V . SMIRNOVA M A, CHERNYAK M. Investigation of acid-catalytic conversion of carbohydrates in the presence of aliphatic alcohols at mild temperatures[J]. Chemistry for Sustainable Development, 2005, 13: 551-558. |
31 | CHE P H , LU F , ZHANG J J , et al . Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production[J]. Bioresource Technology, 2012, 119(3): 433-436. |
32 | XU G Z , CHEN B L , ZHENG Z B , et al . One-pot ethanolysis of carbohydrates to promising biofuels: 5-ethoxymethylfurfural and ethyl levulinate: One-pot ethanolysis of carbohydrates to biofuels[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(4): 527-535. |
33 | LIU B , ZHANG Z H , DENG K J . Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst[J]. Industrial & Engineering Chemistry Research, 2012, 51(47):15331-15336. |
34 | FLANNELLY T , DOOLEY S , LEAHY J J . Reaction pathway analysis of ethyl levulinate and 5-ethoxymethylfurfural from D-fructose acid hydrolysis in ethanol[J]. Energy & Fuels, 2015, 29(11): 7554-7565. |
35 | XIANG B , WANG Y , QI T , et al . Promotion catalytic role of ethanol on brønsted acid for the sequential dehydration-etherification of fructose to 5-ethoxymethylfurfural[J]. Journal of Catalysis, 2017, 352: 586-598. |
36 | GARVES K . Acid catalyzed degradation of cellulose in alcohols[J]. Journal of Wood Chemistry & Technology, 1988, 8(1): 121-134. |
37 | HISHIKAWA Y , YAMAGUCHI M , KUBO S , et al . Direct preparation of butyl levulinate by a single solvolysis process of cellulose[J]. Journal of Wood Science, 2013, 59(2): 179-182. |
38 | LI H , PENG L C , LIN L , et al . Synthesis, isolation and characterization of methyl levulinate from cellulose catalyzed by extremely low concentration acid[J]. Journal of Energy Chemistry, 2013, 22(6):895-901. |
39 | CHANG J L , BAI J , CHANG C , et al . Products distribution of glucose through ethanolysis reaction catalyzed by extremely low acid under high temperature[J]. Chemistry & Industry of Forest Products, 2015, 35(6): 8-14. |
40 | ZHANG Z H , HUBER G W . Catalytic oxidation of carbohydrates into organic acids and furan chemicals[J]. Chemical Society Reviews, 2018, 47(4): 1351-1390. |
41 | YANG Y , HU C W , ABU-OMAR M M . Conversion of glucose into furans in the presence of AlCl3 in an ethanol–water solvent system[J]. Bioresource Technology, 2012, 116(7): 190-194. |
42 | ZHOU X M , ZHANG Z H , LIU B , et al . Catalytic conversion of fructose into furans using FeCl3 as catalyst[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(2): 644-649. |
43 | WANG H L , DENG T S , WANG Y X , et al . Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural[J]. Bioresource Technology, 2013, 136(5): 394-400. |
44 | WANG S G , ZHANG Z H , LIU B , al et , Silica coated magnetic Fe 3O 4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose[J]. Catalysis Science & Technology, 2013, 3(8): 2104-2112. |
45 | REN Y S , LIU B , ZHANG Z H , et al . Silver-exchanged heteropolyacid catalyst (Ag1H2PW): an efficient heterogeneous catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose[J]. Journal of Industrial & Engineering Chemistry, 2015, 21(1):1127-1131. |
46 | LIU A Q , ZHANG Z H , FANG Z F , et al . Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(4):1977-1984. |
47 | YANG Y , ABU-OMAR M M , HU C W . Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate[J]. Applied Energy, 2012, 99(2): 80-84. |
48 | LIU B , ZHANG Z H . One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl D-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst[J]. RSC Advances, 2013, 3(30): 12313-12319. |
49 | LIU B , ZHANG Z H , HUANG K C . Cellulose sulfuric acid as bio-supported and recyclable solid acid catalyst for synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose[J]. Cellulose, 2013, 20(4): 2081-2089. |
50 | LIU X F , LI H , PAN H , et al . Efficient catalytic conversion of carbohydrates into 5-ethoxymethylfurfural over MIL-101-based sulfated porous coordination polymers[J]. Journal of Energy Chemistry, 2016, 25(3): 523-530. |
51 | ZHONG R Y , YU F , SCHUTYSER W , et al . Acidic mesostructured silica-carbon nanocomposite catalysts for biofuels and chemicals synthesis from sugars in alcoholic solutions[J]. Applied Catalysis B:Environmental, 2016, 206: 74-88. |
52 | WANG J M , ZHANG Z H , JIN S W , et al . Efficient conversion of carbohydrates into 5-hydroxylmethylfurfan and 5-ethoxymethylfurfural over sulfonic acid-functionalized mesoporous carbon catalyst[J]. Fuel, 2017, 192: 102-107. |
53 | THOMBAL R S , JADHAV V H . Application of glucose derived magnetic solid acid for etherification of 5-HMF to 5-EMF, dehydration of sorbitol to isosorbide, and esterification of fatty acids[J]. Tetrahedron Letters, 2016, 57(39): 4398-4400. |
54 | YUAN Z L , ZHANG Z H , ZHENG J D , et al . Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates[J]. Fuel, 2015, 150: 236-242. |
55 | LIU X F , LI H , PAN H , et al . Efficient catalytic conversion of carbohydrates into 5-ethoxymethylfurfural over MIL-101-based sulfated porous coordination polymers[J]. Journal of Energy Chemistry, 2016, 25(3): 523-530. |
56 | MORALES G , PANIAGUA M , MELERO J A , et al . Efficient production of 5-ethoxymethylfurfural from fructose by sulfonic mesostructured silica using DMSO as co-solvent[J]. Catalysis Today, 2017, 279: 305-316. |
57 | LANZAFAME P , TEMI D M , PERATHONER S , et al . Etherification of 5-hydroxymethyl-2-furfural(HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts[J]. Catalysis Today, 2011, 175(1): 435-441. |
58 | 张秋云, 蔡杰, 张玉涛, 等 . 基于生物质转化制备5-乙氧基甲基糠醛研究进展[J]. 精细石油化工, 2015, 32(1): 42-47. |
ZHANG Q Y , CAI J , ZHANG Y T , et al . Recent advances in conversion of biomass to novel platform chemical 5-ethoxymethylfurfural[J]. Speciality Petrochemicals, 2015, 32(1): 42-47. | |
59 | TAKAGAKI A , OHARA M , NISHIMURA S , et al . A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides[J]. Cheminform, 2010, 41(10): 6276-6278. |
60 | LI H , GOVIND K S , KOTNI R , et al . Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid-base bifunctional hybrid nanospheres.[J]. Energy Conversion & Management, 2014, 88:1245-1251. |
61 | POLIAKOOFF M , FITZPATRICK J M , FARREN T R , et al . Green chemistry: science and politics of change[J]. Science, 2002, 297(5582):807-810. |
62 | WANG H , GURAU G , ROGERS R D . Ionic liquid processing of cellulose[J]. Chemical Society Reviews, 2012, 41(4): 1519-1537. |
63 | QI X H , WATANABE M , AIDA T M , et al . Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids[J]. Green Chemistry, 2010, 12(10): 1855-1860. |
64 | COLE A C , JENSEN J L , NTAI I , et al . Novel brønsted acidic ionic liquids and their use as dual solvent-catalysts[J]. Journal of the American Chemical Society, 2002, 124(21): 5962-5963. |
65 | GUO H X , QI X H , HIRAGA Y , et al . Efficient conversion of fructose into 5-ethoxymethylfurfural with hydrogen sulfate ionic liquids as co-solvent and catalyst[J]. Chemical Engineering Journal, 2017, 314: 508-514. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |