Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1353-1361.DOI: 10.16085/j.issn.1000-6613.2018-0428
Previous Articles Next Articles
Hao XU(),Yiqi XU,Yishu JIANG,Qunfeng ZHANG(),Xiaonian LI()
Received:
2018-03-02
Revised:
2018-05-17
Online:
2019-03-05
Published:
2019-03-05
Contact:
Qunfeng ZHANG,Xiaonian LI
通讯作者:
张群峰,李小年
作者简介:
基金资助:
CLC Number:
Hao XU,Yiqi XU,Yishu JIANG,Qunfeng ZHANG,Xiaonian LI. Research progress in palladium-based catalysts for selective hydrogenation of acetylene[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1353-1361.
徐浩,徐逸琦,蒋亦舒,张群峰,李小年. 钯基乙炔选择性加氢催化剂研究进展[J]. 化工进展, 2019, 38(03): 1353-1361.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0428
1 | 骆红静, 吕晓东, 赵睿, 等 . 2016年世界和中国石化工业综述及展望[J]. 国际石油经济, 2017(5): 51-60. |
LUO H J , LÜ X D , ZHAO R , et al . 2016 review and 2017 outlook of global and China petrochemical industry[J]. International Petroleum Economics, 2017(5): 51-60. | |
2 | CHAI M , LIU X , LI L , et al . SiO2-supported Au-Ni bimetallic catalyst for the selective hydrogenation of acetylene[J]. Chinese Journal of Catalysis, 2017, 38(8): 1338-1346. |
3 | 李振宇, 王红秋, 黄格省, 等 . 我国乙烯生产工艺现状与发展趋势分析[J]. 化工进展, 2017, 36(3): 767-773. |
LI Z Y , WANG H Q , HUANG G S , et al . Research progress of ZSM-5 zeolite for hydrocarbon fuel catalytic cracking against carbon deposition[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 767-773. | |
4 | ARMBRÜSTER M , KOVNIR K , BEHRENS M , et al . Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts[J]. Journal of the American Chemical Society, 2010, 132(42): 14745-14747. |
5 | 李菲菲, 孙逊, 孙立波, 等 . 负载型纳米金催化剂在乙炔选择性加氢反应中的研究进展[J]. 工业催化, 2016, 24(10): 21-27. |
LI F F , SUN X , SUN L B , et al . Progress in supported nanogold catalyst for selective hydrogenation of acetylene[J]. Industrial Catalysis, 2016, 24(10): 21-27. | |
6 | YANG B , BURCH R , HARDACRE C , et al . Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: a density functional theory study[J]. Journal of Catalysis, 2013, 305:264-276. |
7 | 苑兴洲, 陈绍云, 陈恒, 等 . 甲烷在Cr改性Pd/Al2O3催化剂上的催化燃烧性能[J]. 化工进展, 2014, 33(12): 3258-3262. |
YUAN X Z , CHEN S Y , CHEN H , et al . Cr modified Pd/Al2O3 catalyst for methane combustion[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3258-3262. | |
8 | KRAJČÍ M , HAFNER J . The (210) surface of intermetallic B20 compound GaPd as a selective hydrogenation catalyst: a DFT study[J]. Journal of Catalysis, 2012, 295:70-80. |
9 | ARMBRÜSTER M , BEHRENS M , CINQUINI F , et al . How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry[J]. Chemcatchem, 2012, 4(8): 1048-1063. |
10 | PEI G X , LIU X Y , ZHANG T , et al . Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6): 3717-3725. |
11 | 车春霞, 沈立军, 谭都平, 等 . 乙炔选择性加氢反应催化机理的分子模拟研究[J]. 工业催化, 2012, 20(1): 49-53. |
CHE C X , SHEN L J , TAN D P , et al . Molecular simulation research on the catalytic mechanism of selective hydrogenation of acetylene[J]. Industrial Catalysis, 2012, 20(1): 49-53. | |
12 | ZHOU H R , YANG X F , ZHANG T , et al . PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene[J]. ACS Catalysis, 2016, 6(2): 1054-1061. |
13 | LIU Y N , HE Y F , FENG J T , et al . Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene:effect of Pd-Cu alloy formation[J]. Catalysis Science&Technology, 2016, 6(9): 3027-3037. |
14 | FENG J T , LIU Y N , YIN M , et al . Preparation and structure-property relationships of supported trimetallic PdAuAg catalysts for the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2016, 344:854-864. |
15 | FU Q , LI W X , YAO Y X , et al . Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5982): 1141-1144. |
16 | LU J L , FU B S , KUNG M C , et al . Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition[J]. Science, 2012, 335(6073): 1205-1208. |
17 | YI H , DU H Y , HU Y L , et al . Precisely controlled porous alumina overcoating on Pd catalyst by atomic layer deposition: enhanced selectivity and durability in hydrogenation of 1,3-butadiene[J]. ACS Catalysis, 2015, 5(5): 2735-2739. |
18 | DING L B , YI H , HAUNG W H , et al . Activating edge sites on Pd catalysts for selective hydrogenation of acetylene via selective Ga2O3 decoration[J]. ACS Catalysis, 2016, 6(6): 3700-3707. |
19 | AHN I Y, KIM W J, MOON S H . Performance of La2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation[J]. Applied Catalysis A:General, 2006, 308:75-81. |
20 | KIM W J, MOON S H . Modified Pd catalysts for the selective hydrogenation of acetylene[J]. Catalisis Today, 2012, 185(1): 2-16. |
21 | KIM E, SHIN E W , BARK C W , et al . Pd catalyst promoted by two metal oxides with different reducibilities: properties and performance in the selective hydrogenation of acetylene[J]. Applied Catalysis A:General, 2014, 471:80-83. |
22 | TRIMM D L , LIU I O Y , CANT N W . The effect of carbon monoxide on the oligomerization of acetylene in hydrogen over a Ni/SiO2 catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2009, 307(1/2): 13-20. |
23 | MCKENNA F M , WELLS R P K , ANDERSON J A . Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts[J]. Chemical Communications, 2011, 47(8): 2351-2353. |
24 | MCCUE A J , MCKENNA F M , ANDERSON J A . Triphenylphosphine:a ligand for heterogeneous catalysis too?Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst[J]. Catalysis Science&Technology, 2015, 5(4): 2449-2459. |
25 | MCKENNA F M , ANDERSON J A . Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts[J]. Journal of Catalysis, 2011, 281(2): 231-240. |
26 | HU M , WANG X Q . Effect of N3 - species on selective acetylene hydrogenation over Pd/SAC catalysts[J]. Catalysis Today, 2016, 263:98-104. |
27 | PEI G X , LIU X Y , ZHANG T , et al . Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene[J]. New Journal of Chemistry, 2014, 38(5): 2043-2051. |
28 | ZHOU H R , YANG X F , ZHANG T , et al . Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation[J]. Chinese Journal of Catalysis, 2016, 37(5): 692-699. |
29 | KRAJČÍ M , HAFNER J . Selective semi-hydrogenation of acetylene:atomistic scenario for reactions on the polar threefold surfaces of GaPd[J]. Journal of Catalysis, 2014, 312:232-248. |
30 | VILE G , ALBANI D , NACHTEGAAL M , et al . A stable single-site palladium catalyst for hydrogenations[J]. Angewandte Chemie-International Edition, 2015, 54(38): 11265-11269. |
31 | KIM S K, KIM C, MOON S H , et al . Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene[J]. Journal of Catalysis, 2013, 306:146-154. |
32 | HE Y F , LIU Y N , LI D Q , et al . Fabrication of a PdAg mesocrystal catalyst for the partial hydrogenation of acetylene[J]. Journal of Catalysis, 2015, 330:61-70. |
33 | ELLIS I T , WOLF E H , JONES G , et al . Lithium and boron as interstitial palladium dopants for catalytic partial hydrogenation of acetylene[J]. Chemical Communications, 2017, 53(3): 601-604. |
34 | LUO Y , VILLASECA S A , ARMBRÜSTER M , et al . Addressing electronic effects in the semi-hydrogenation of ethyne by InPd2 and intermetallic Ga-Pd compounds[J]. Journal of Catalysis, 2016, 338:265-272. |
35 | MCCUE A J , GUERRERO-RUIZ A , RODRÍGUEZ-RAMOS I , et al . Palladium sulphide—A highly selective catalyst for the gas phase hydrogenation of alkynes to alkenes[J]. Journal of Catalysis, 2016, 340:10-16. |
36 | MCCUE A J , GUERRERO-RUIZ A , RAMIREZ-BARRIA C , et al . Selective hydrogenation of mixed alkyne/alkene streams at elevated pressure over a palladium sulfide catalyst[J]. Journal of Catalysis, 2017, 355:40-52. |
37 | SANGKHUM T , MEKASUWANDUMRONG O , PANPRANOT J , et al . Effect of Fe-modified α-Al2O3 on the properties of Pd/α-Al2O3 catalysts in selective acetylene hydrogenation[J]. Reaction Kinetics and Catalysis Letters, 2009, 97(1): 115-123. |
38 | 徐爽, 台宝泉, 李晓燕, 等 . 二硫化物修饰改性乙炔加氢催化剂研究[J]. 石油化工高等学校学报, 2014, 27(4): 1-5. |
XU S , TAI B Q , LI X Y , et al . Study on acetylene hydrogenation catalysts modified by disulfide[J]. Journal of Petrochemical Universities, 2014, 27(4): 1-5. | |
39 | KOMEILI S , RAVANCHI M T , TAEB A . The influence of alumina phases on the performance of the Pd-Ag/Al2O3 catalyst in tail-end selective hydrogenation of acetylene[J]. Applied Catalysis A:General,2015, 502:287-296. |
40 | RAVANCHI M T , FADAEERAYENI S , FARD M R . The effect of calcination temperature on physicochemical properties of alumina as a support for acetylene selective hydrogenation catalyst[J]. Research on Chemical Inter2018-0428tes, 2015, 42(5): 4797-4811. |
41 | 李冰杰, 史秀锋, 刘秀芳, 等 . ZnAl水滑石负载钯催化剂的制备及催化性能[J]. 化工进展, 2014, 33(10): 2661-2664. |
LI B J , SHI X F , LIU X F , et al . Preparation of hydrotalcite-supported palladium catalysts and their catalytic performances[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2661-2664. | |
42 | FENG J T , MA X Y, LI D Q , et al . Enhancement of metal dispersion and selective acetylene hydrogenation catalytic properties of a supported Pd catalyst[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 1947-1954. |
43 | MA X Y, CHAI Y Y , EVANS D , et al . Preparation and selective acetylene hydrogenation catalytic properties of supported Pd catalyst by the in situ precipitation-reduction method[J]. The Journal of Physical Chemistry C, 2011, 115(17): 8693-8701. |
44 | JIN Q , HE Y F , FENG J T , et al . Highly selective and stable PdNi catalyst derived from layered double hydroxides for partial hydrogenation of acetylene[J]. Applied Catalysis A:General, 2015, 500:3-11. |
45 | OOSTHUIZEN R S , NYAMORI V O . Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions[J]. Platinum Metals Review, 2011, 55(3): 154-169. |
46 | BENAVIDEZ A D , BURTON P D , DATYE A K , et al . Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene[J]. Applied Catalysis A:General, 2014, 482(26): 108-115. |
47 | LU H M , XU B L , FAN Y N , et al . The influence of Pd particles distribution position on Pd/CNTs catalyst for acetylene selective hydrogenation[J]. Catalysis Letters, 2014, 144(12): 2198-2203. |
48 | CHESNOKOV V V , PODYACHEVA O Y , RICHARDS R M . Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene[J]. Materials Research Bulletin, 2017, 88:78-84. |
49 | HUANG X H , XIA Y J , LU J L , et al . Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation[J]. Nano Research, 2017, 10(4): 1302-1312. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |