Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (10): 3988-3994.DOI: 10.16085/j.issn.1000-6613.2017-2322

Previous Articles     Next Articles

Mutation breeding and optimization of fermentation medium for ansamitocinP-3 production from Actinosynnema pretiosum ssp. Auranticum

RONG Yan, GUO Jing, SU Chun, GUAN Yina, ZHU Xiaolin, CAI Zhiqiang   

  1. Laboratory of Applied Microbiology and Biotechnology, School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, Jiangsu, China
  • Received:2017-11-05 Revised:2018-04-12 Online:2018-10-05 Published:2018-10-05

安丝菌素P-3生产菌株Actinosynnema pretiosum ssp. auranticum的诱变育种及其发酵培养基优化

荣艳, 郭静, 苏春, 管义娜, 朱孝霖, 蔡志强   

  1. 常州大学制药与生命科学学院应用微生物实验室, 江苏 常州 213164
  • 通讯作者: 蔡志强,教授,硕士生导师,研究方向为应用环境微生物、微生物发酵工程。
  • 作者简介:荣艳(1990-),女,硕士研究生。
  • 基金资助:
    国家自然科学基金项目(11275033)。

Abstract: To improve the microbial fermentation yield of ansamitocinP-3 (AP-3), 96-well plate-microplate high-throughput screening method was established by UV-spectrophotometry. UV mutation breeding was carried out using the original strain (Actinosynnema pretiosum ssp. auranticum). A mutant strain B24-13 was obtained, and the higher production of AP-3 was 2.03-fold (reaching 112.5mg/L) compared with that original strain after 7 days fermentation, and the fermentation medium was optimized by culture medium optimization. After the analysis of the experimental results, the optimal medium for the mutant strain B24-13 was sucrose 25g/L, glycerol 1.5g/L, corn steep liquor 25g/L, CaCO3 7g/L, isobutanol 2g/L, valine 0.5g/L, MgSO4 ·7H2O, 0.5g/L, and FeSO4·7H2O 0.01g/L. Under those conditions, the yield of AP-3 was (127.5±6.3)mg/L after 7 days fermentation. The yield of AP-3 can be further improved by the mutagenesis breeding and the optimization of the culture medium. It is proved that the UV-spectrophotometry method is feasible for the rapid screening AP-3 high production strain.

Key words: ansamitocinP-3, UV mutagenesis, UV spectrophotometry, culture medium optimization, orthogonal design

摘要: 为了提高安丝菌素P-3(AP-3)的发酵产量,通过紫外诱变并运用紫外-分光光度法建立96孔板高通量快速筛选体系对原始菌株(Actinosynnema pretiosum ssp.auranticum)进行育种,筛选获得了一株产量较高的突变菌株B24-13。发酵7天后,其发酵液中AP-3的含量为112.5mg/L,是原始菌株的2.03倍。随后通过单因素优化与正交实验设计对突变菌株B24-13进行发酵培养基优化,得到最优发酵培养基组分:蔗糖25g/L,甘油15g/L,玉米浆25g/L,CaCO3 7g/L,异丁醇2g/L,缬氨酸0.5g/L,MgSO4·7H2O 0.5g/L,FeSO4·7H2O 0.01g/L。对优化结果进行验证实验,发酵7天后AP-3的产量为(127.5±6.3) mg/L。实验结果表明:通过对生产菌株的诱变育种与发酵培养基优化可有效的提高AP-3的发酵产量,也从侧面验证了该研究所建立的96孔板高通量快速筛选体系用于AP-3高产菌株的初筛是可行的。

关键词: 安丝菌素P-3, 紫外诱变, 紫外-分光光度法, 培养基优化, 正交设计

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd