Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (08): 2962-2969.DOI: 10.16085/j.issn.1000-6613.2017-1840
Previous Articles Next Articles
QU Lei1, CUI Xiang1, YANG Haiping1, WANG Xianhua1, ZHANG Wennan2, SHAO Jing'ai1, CHEN Hanping1
Received:
2017-09-04
Revised:
2017-10-31
Online:
2018-08-05
Published:
2018-08-05
曲磊1, 崔翔1, 杨海平1, 王贤华1, 张文楠2, 邵敬爱1, 陈汉平1
通讯作者:
王贤华,副教授,研究方向为生物质利用技术。
作者简介:
曲磊(1994-),女,硕士研究生。
基金资助:
CLC Number:
QU Lei, CUI Xiang, YANG Haiping, WANG Xianhua, ZHANG Wennan, SHAO Jing'ai, CHEN Hanping. Review on the preparation of bio-oil by microalgae hydrothermal liquefaction[J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2962-2969.
曲磊, 崔翔, 杨海平, 王贤华, 张文楠, 邵敬爱, 陈汉平. 微藻水热液化制取生物油的研究进展[J]. 化工进展, 2018, 37(08): 2962-2969.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1840
[1] 钱伯章, 李敏. 世界能源结构向低碳燃料转型:BP公司发布2016年世界能源统计年鉴[J]. 中国石油和化工经济分析, 2016, 36(8):35-39. QIAN B Z, LI M. World energy structure to low carbon fuel transition-BP company released:2016 world energy statistical yearbook[J]. China Petroleum and Chemical Economics Analysis, 2016, 36(8):35-39. [2] TAlBOT C, GARCIA-MOSCOSO J, DRAKE H, et al. Cultivation of microalgae using flash hydrolysis nutrient recycle[J]. Algal Research, 2016, 18:191-197. [3] 徐春明, 焦志亮, 王晓丹, 等. 微藻作原料生产生物柴油的研究现状和前景[J]. 现代化工, 2015, 35(8):1-5. XU C M, JIAO Z L, WANG X D, et al. Research status and prospect of production of biodiesel from microalgae as raw materials[J]. Modern Chemical Industry, 2015, 35(8):1-5. [4] PATEL B, ARCELUS-ARRILLAGA P, IZADPANAH A, et al. Catalytic hydrotreatment of algal biocrude from fast hydrothermal liquefaction[J]. Renewable Energy, 2017, 101:1094-1101. [5] ZHU Z, SI B, LU J, et al. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk[J]. Bioresource Technology, 2017, 243:9-16. [6] DIMITRIADIS, BEZERGIANNI S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production:a state of the art review[J]. Renewable and Sustainable Energy Reviews, 2017, 68:113-125. [7] ARUN J, SHREEKANTH S J, SAHANA R, et al. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater[J]. Bioresource Technology, 2017, 244:963-968. [8] ZHANG B, LIN Q, ZHANG Q, et al. Catalytic hydrothermal liquefaction of Euglena sp. microalgae over zeolite catalysts for the production of bio-oil[J]. RSC Adv., 2017, 7(15):8944-8951. [9] SHAKYA R, ADHIKARI S, MAHADEVAN R, et al. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties[J]. Bioresource Technology, 2017, 243:1112-1120. [10] 任海涛, 郭放, 杨晓奕. 中国微藻航空煤油制备潜能及CO2减排[J]. 北京航空航天大学学报, 2016, 42(5):912-919. REN H T, GUO F, YANG X Y. Preparation potential and CO2 emission reduction of Chinese aviation kerosene[J]. Journal of Beihang University, 2016, 42(5):912-919. [11] CHIARAMONTI D, PRUSSI M, BUFFI M, et al. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production[J]. Applied Energy, 2017, 185:963-972. [12] HU Z, ZHENG Y, YAN F, et al. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB):product distribution and bio-oil characterization[J]. Energy, 2013, 52(2):119-125. [13] SUDASINGHE, REDDY H, CSAKAN N, et al. Temperature-dependent lipid conversion and nonlipid composition of microalgal hydrothermal liquefaction oils monitored by Fourier transform ion cyclotron resonance mass spectrometry[J]. Bioenergy Research, 2015, 8(4):1962-1972. [14] KIM S W, KOO B S, LEE D H. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed[J]. Bioresource Technology, 2014, 162:96-102. [15] JENA U, DAS K C. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae[J]. Energy Fuels, 2011, 25(11):5472-5482. [16] MADSEN R B, ZHANG H, BILLER P, et al. Characterizing semivolatile organic compounds of biocrude from hydrothermal liquefaction of biomass[J]. Energy & Fuels, 2017, 31(4):4122-4134. [17] GUO Q, MAN W, KAI W, et al. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2 catalysts[J]. Industrial & Engineering Chemistry Research, 2015, 54(3):890-899. [18] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass:a review of subcritical water technologies[J]. Energy, 2011, 36(5):2328-2342. [19] WANG M, LEE E, DILBECK M P, et al. Thermal pretreatment of microalgae for biomethane production:experimental studies, kinetics and energy analysis[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(2):399-407. [20] BHAVSAR P, ZOCCOLA M, PATRUCCO A, et al. Comparative study on the effects of superheated water and high temperature alkaline hydrolysis on wool keratin[J]. Textile Research Journal, 2017, 87(14):1696-1705. [21] ABDELMOEZ W, TOMOMI NAKAHASI A, YOSHIDA H. Amino acid transformation and decomposition in saturated subcritical water conditions[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1):5286-5294. [22] SHEEHANT J D, SAVAGE P E. Products, pathways, and kinetics for the fast hydrothermal liquefaction of soy protein isolate[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12):6931-6939. [23] HUANG Y, CHEN Y, XIE J, et al. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp.[J]. Fuel, 2016, 183:9-19. [24] HU Y, FENG S, XU C, et al. Production of low-nitrogen bio-crude oils from microalgae pre-treated with pre-cooled NaOH/urea solution[J]. Fuel, 2017, 206:300-306. [25] PALARDY O, BEHNKE C, LAURENS L M L. Fatty amide determination in neutral molecular fractions of green crude hydrothermal liquefaction oils from algal biomass[J]. Energy & Fuels, 2017, 31(8):8275-8282. [26] KOCSISOVA T, JUHASZ J, CVENGRO J, et al. Hydrolysis of fatty acid esters in subcritical water[J]. European Journal of Lipid Science & Technology, 2006, 108(8):652-658. [27] BÜHLER W, DINJUS E, EDERER H J, et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water[J]. Journal of Supercritical Fluids, 2002, 22(1):37-53. [28] XIE G, CHEN Y, BEI K, et al. Hydrothermal liquefaction phase behavior of microalgae & model compounds in fused silica capillary reactor[J]. International Journal of Green Energy, 2017, 14(11):861-867. [29] MA W, DU G, LI J, et al. Supercritical water pyrolysis of sewage sludge[J]. Waste Management, 2017, 59:371-378. [30] VO T K, KIM S-S, HOANG VU L, et al. A general reaction network and kinetic model of the hydrothermal liquefaction of microalgae Tetraselmis sp.[J]. Bioresource Technology, 2017, 241:610-619. [31] ORTIZ-TENA J G, RUEHMANN B, SCHIEDER D, et al. Revealing the diversity of algal monosaccharides:fast carbohydrate fingerprinting of microalgae using crude biomass and showcasing sugar distribution in Chlorella vulgaris by biomass fractionation[J]. Algal Research:Biomass Biofuels and Bioproducts, 2016, 17:227-235. [32] YIN S, TAN Z. Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions[J]. Applied Energy, 2012, 92:234-239. [33] SONG W, WANG S, GUO Y, et al. Bio-oil production from hydrothermal liquefaction of waste Cyanophyta biomass:influence of process variables and their interactions on the product distributions[J]. International Journal of Hydrogen Energy, 2017, 42(31):20361-20374. [34] JIN B, DUAN P, ZHANG C, et al. Non-catalytic liquefaction of microalgae in sub-and supercritical acetone[J]. Chemical Engineering Journal, 2014, 254:384-392. [35] KUMAR G, SHOBANA S, CHEN W-H, et al. A review of thermochemical conversion of microalgal biomass for biofuels:chemistry and processes[J]. Green Chem., 2017, 19(1):44-67. [36] SABER M, GOLZARY A, HOSSEINPOUR M, et al. Catalytic hydrothermal liquefaction of microalgae using nanocatalyst[J]. Applied Energy, 2016, 183:566-576. [37] VALDEZ P J, NELSON M C, FAETH J L, et al. Hydrothermal liquefaction of bacteria and yeast monocultures[J]. Energy & Fuels, 2014, 28(1):67-75. [38] ZHOU D, ZHANG L, ZHANG S, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy & Fuels, 2010, 24(7):4054-4061. [39] BROWN T M, DUAN P, SAVAGE P E. Hydrothermal liquefaction and gasification of nannochloropsis sp[J]. Energy & Fuels, 2010, 24(6):3639-3646. [40] YU G, ZHANG Y, SCHIDEMAN L, et al. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae[J]. Energy & Environmental Science, 2011, 4(11):4587-4595. [41] BISWAS B, KUMAR A A, BISHT Y, et al. Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae[J]. Bioresource Technology, 2017, 242:344-350. [42] AIDA T M, OSHIMA M, SMITH R L. Controlled conversion of proteins into high-molecular-weight peptides without additives with high-temperature water and fast heating rates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9):7709-7715. [43] BILLER P, SHARMA B K, KUNWAR B, et al. Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae[J]. Fuel, 2015, 159:197-205. [44] BOENS B, PILON G, BOURDEAU N, et al. Hydrothermal liquefaction of a wastewater native Chlorella sp. bacteria consortium:biocrude production and characterization[J]. Biofuels, 2016, 7(6):611-619. [45] PATEL B, GUO M, CHONG C, et al. Hydrothermal upgrading of algae paste:inorganics and recycling potential in the aqueous phase[J]. Science of the Total Environment, 2016, 568:489-497. [46] SUESSE A R, NORTON G A, VAN LEEUWEN J. Pilot-scale continuous-flow hydrothermal liquefaction of filamentous fungi[J]. Energy & Fuels, 2016, 30(9):7379-7386. [47] YANG W C, LI X G, LIU S S, et al. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts[J]. Energy Conversion & Management, 2014, 87:938-945. [48] ZOU S P, WU Y L, YANG M D, et al. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake[J]. Energy, 2010, 35(12):5406-5411. [49] BARREIRO D L, GOMEZ B R, HORNUNG U, et al. Hydrothermal liquefaction of microalgae in a continuous stirred-tank reactor[J]. Energy & Fuels, 2015, 29(10):6422-6432. [50] YANG L, LI Y, SAVAGE P E. Near-and supercritical ethanol treatment of biocrude from hydrothermal liquefaction of microalgae[J]. Bioresource Technology, 2016, 211:779-782. [51] DING X, HUANG Y, LIAO Q, et al. Medium-low temperature hydrothermal hydrolysis kinetic characteristics of concentrated wet microalgae biomass[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(1):154-162. [52] FUSHIMI C, UMEDA A. Comparison of biodiesel production by a supercritical methanol method from microalgae oil using solvent extraction and hydrothermal liquefaction processes[J]. Energy & Fuels, 2016, 30(10):7916-7922. [53] CHEN Y, WU Y, ZHANG P, et al. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water[J]. Bioresour Technol, 2012, 124:190-198. [54] YANG L, LI Y, SAVAGE P E. Near-and supercritical ethanol treatment of biocrude from hydrothermal liquefaction of microalgae[J]. Bioresour Technol., 2016, 211:779-782. [55] CAPORGNO M P, PRUVOST J, LEGRAND J, et al. Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents[J]. Bioresour Technol., 2016, 214:404-410. [56] ROSS A B, BILLER P, KUBACKI M L, et al. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel, 2010, 89(9):2234-2243. [57] JENA U, DAS K C, KASTNER J R. Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis[J]. Applied Energy, 2012, 98:368-375. [58] DUAN P, SAVAGE P E. Hydrothermal liquefaction of a microalga with heterogeneous catalysts[J]. Industrial & Engineering Chemistry Research, 2011, 50(1):52-56. [59] XU Y, ZHENG X, YU H, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5[J]. Bioresour Technol., 2014, 156(4):1-5. [60] JENA U, DAS K C, KASTNER J R. Comparison of the effects of Na2CO3, Ca3(PO4)2, and NiO catalysts on the thermochemical liquefaction of microalga Spirulina platensis[J]. Applied Energy, 2012, 98(5):368-375. [61] LIN Q, CHEN Y, TANG Y, et al. Catalytic hydrothermal liquefaction of D. tertiolecta over multifunctional mesoporous silica-based catalysts with high stability[J]. Microporous and Mesoporous Materials, 2017, 250:120-127. [62] NAM H, KIM C, CAPAREDA S C, et al. Catalytic upgrading of fractionated microalgae bio-oil (Nannochloropsis oculata) using a noble metal (Pd/C) catalyst[J]. Algal Research-Biomass Biofuels and Bioproducts, 2017, 24:188-198. [63] BIAN J, ZHANG Q, ZHANG P, et al. Supported Fe2O3 nanoparticles for catalytic upgrading of microalgae hydrothermal liquefaction derived bio-oil[J]. Catalysis Today, 2017, 293:159-166. [64] YEH T M, DICKINSON J G, FRANCK A, et al. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(1):13-24. [65] MINOWA T, ZHEN F, OGI T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst[J]. Journal of Supercritical Fluids, 1998, 13(1/2/3):253-259. [66] CAO L, ZHANG C, HAO S, et al. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction[J]. Bioresource Technology, 2016, 220:471-478. [67] HU Y, FENG S, YUAN Z, et al. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae[J]. Bioresource Technology, 2017, 239:151-159. [68] HU Y, GONG M, XU C, et al. Investigation of an alternative cell disruption approach for improving hydrothermal liquefaction of microalgae[J]. Fuel, 2017, 197:138-144. [69] YU G, ZHANG Y, GUO B, et al. Nutrient flows and quality of bio-crude oil produced via catalytic hydrothermal liquefaction of low-lipid microalgae[J]. BioEnergy Research, 2014, 7(4):1317-1328. [70] 徐玉福, 俞辉强, 朱利华, 等. 小球藻粉水热催化液化制备生物油[J]. 农业工程学报, 2012, 28(19):194-199. XU Y F, YU H Q, ZHU L H, et al. Preparation of bio oil by hydrothermal liquefaction of Chlorella powder[J]. Chinese Journal of agricultural engineering, 2012, 28(19):194-199. [71] ZHANG B, KEITZ M V, VALENTAS K. Thermochemical liquefaction of high-diversity grassland perennials[J]. Journal of Analytical & Applied Pyrolysis, 2009, 84(1):18-24. [72] CHEN Y, MU R, YANG M, et al. Catalytic hydrothermal liquefaction for bio-oil production over CNTs supported metal catalysts[J]. Chemical Engineering Science, 2017, 161:299-307. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |