Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (08): 3001-3008.DOI: 10.16085/j.issn.1000-6613.2017-1839
Previous Articles Next Articles
WEN Cong, CHEN Donglin, XIONG Ying
Received:
2017-09-04
Revised:
2017-10-16
Online:
2018-08-05
Published:
2018-08-05
文聪, 陈冬林, 熊颖
通讯作者:
文聪(1992-),男,硕士研究生,研究方向为燃烧理论与高效清洁燃烧技术。
作者简介:
文聪(1992-),男,硕士研究生,研究方向为燃烧理论与高效清洁燃烧技术。E-mail:2474877706@qq.com。
基金资助:
CLC Number:
WEN Cong, CHEN Donglin, XIONG Ying. Research progress of the loading method of denitrification catalyst on the surface of metal base[J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3001-3008.
文聪, 陈冬林, 熊颖. 脱硝催化剂在金属基体表面的负载方法与工艺研究进展[J]. 化工进展, 2018, 37(08): 3001-3008.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1839
[1] 吕亚亚, 朱彤. 工业锅炉及炉窑大气污染物排放标准的对比分析[J]. 热能动力工程, 2017, 32(1):1-6, 117. LÜ Yaya, ZHU Tong. Comparison and analysis of air pollutants emission standards for industrial boilers and kilns[J]. Thermal Power Engineering, 2017, 32(1):1-6, 117. [2] 国静芳, 高艳秋. 燃煤锅炉改燃气锅炉项目节能减排分析[J]. 中国资源综合利用, 2018, 36(1):102-104. GUO Jingfang, GAO Yanqiu. Analysis of energy saving and emission reduction of coal-fired boiler to gas boiler project[J]. China Resources Comprehensive Utilization, 2018, 36(1):102-104. [3] LENG Tingshuang, LIANG Baorui, JIA Qian, et al. Preparation and performance study of SCR denitration catalyst with the skeleton of the titanium plate[J]. Environmental Engineering, 2014, 32:661-666. [4] 胡雍巍. 不锈钢板载V2O5/TiO2脱硝催化剂的制备及其脱硝性能研究[D]. 长沙:湖南师范大学, 2012. HU Yongwei. Preparation of V2O5-WO3-TiO2 catalysts supported on stainless steel plate and their catalytic properties for selective catalytic reduction of NOx with ammonia[D]. Changsha:Hunan Normal University, 2012. [5] ZUMETA I, ESPINOSA R, AYLLÓN J A, et al. Comparative study of nanocrystalline TiO2, photoelectrodes based on characteristics of nanopowder used[J]. Solar Energy Materials & Solar Cells, 2003, 76(1):15-24. [6] 江玲超. 负载金属催化剂的新制备方法研究[D]. 杭州:浙江工业大学, 2009. JIANG Lingchao. Study of the novel preparation methods of supported metal catalyst[D]. Hangzhou:Zhejiang University of Technology, 2009. [7] LU Qiang, SU Shuhua, FEN Shiye, et al. The deNOx characteristics of V/Ti plate SCR catalysts[J]. Advanced Materials Research, 2012, 356-360(9):1712-1715. [8] 郭凤. 烧蚀型载体烟气脱硝催化剂的制备与性能研究[D]. 徐州:中国矿业大学, 2014. GUO Feng. Preparation and evaluation of deNOx catalyst based on impregnation faciliated by combustible carrier[D]. Xuzhou:China University of Mining and Technology, 2014. [9] 王涛. 空气预热器SCR脱硝适应性及催化剂的试验研究[D]. 济南:山东大学, 2015. WANG Tao. Study on the adaptation of air preheater for selective catalytic reduction and catalysts[D]. Jinan:Shandong University, 2015. [10] 赵晓萌, 曹立新, 高荣杰, 等. 利用离子交换法制备银沉积二氧化钛纳米结构及其光催化性能的研究[J]. 人工晶体学报, 2014, 43(9):2171-2177. ZHAO Xiaomeng, CAO Lixin, GAO Rongjie, et al. Preparation and photocatalytic properties of silver deposited nano-titanium dioxide via ion-exchange process[J]. Journal of Synthetic Crystals, 2014, 43(9):2171-2177. [11] 陈凯歌, 肖峰, 蒋晓萍, 等. 载体结构对锡铁负载型催化剂脱硝性能的影响[J]. 化工进展, 2016, 35(12):3919-3927. CHEN Kaige, XIAO Feng, JIANG Xiaoping, et al. Effect of pore structure on the performance of Sn-Fe supported catalyst in denitration[J]. Chemical Industry and Engineering Progress, 2016, 35(12):3919-3927. [12] 李晨露, 唐晓龙, 易红宏, 等. Mn基低温SCR催化剂的抗H2O、抗SO2研究进展[J]. 化工进展, 2017, 36(3):934-943. LI Chenlu, TANG Xiaolong, YI Honghong, et al. Review on manganese based catalysts resistant to H2O and SO2 for SCR reduction at low temperature[J]. Chemical Industry and Engineering Progress, 2017, 36(3):934-943. [13] GALVITA V, SIDDIQI G, SUN P, et al. Ethane dehydrogenation on Pt/Mg(Al)O and PtSn/Mg(Al)O catalysts[J]. Journal of Catalysis, 2010, 271(2):209-219. [14] 陈领鹏, 田志鹏, 吕微, 等. 离子交换法制备Pt-SnE/Mg(Al)O催化剂及其烷烃催化脱氢性能[J]. 燃料化学学报, 2016, 44(5):597-606. CHEN Lingpeng, TIAN Zhipeng, LÜ Wei, et al. Preparation of Pt-SnE/Mg(A1)O catalyst by anion exchange method and its performance in alkane dehydrogenation[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5):597-606. [15] 徐力. 低温NH3选择还原NO催化剂及催化作用机制研究[D]. 大连:大连理工大学, 2014. XU Li. Investigation on effective catalysts and catalytic mechanism for low-temperature selective reduction of NO with NH3[D]. Dalian:Dalian University of Technology, 2014. [16] RAMANA C V, SMITH R J, HUSSAIN O M, et al. Correlation between growth conditions, microstructure, and optical properties in pulsed-laser-deposited V2O5 thin films[J]. Chemistry of Materials, 2007, 17(5):1213-1219. [17] AND Y Q C, QIN Q Z. Fabrication and characterization of silver-V2O5 composite thin films as lithium-ion insertion materials[J]. Chemistry of Materials, 2002, 14(7):3152-3157. [18] ROUSSET J L, AIRES F J C S, SEKHAR B R, et al. Comparative X-ray photoemission spectroscopy study of Au, Ni, and AuNi clusters produced by laser vaporization of bulk metals[J]. Journal of Physical Chemistry B, 2000, 104(23):5430-5435. [19] ARRⅡ S, MORFIN F, AND A J R, et al. Oxidation of CO on gold supported catalysts prepared by laser vaporization:direct evidence of support contribution[J]. Journal of the American Chemical Society, 2004, 126(4):1199-1205. [20] MAKGWANE P R, FERG E E, ZEELIE B. Characterisation and long-term usage catalytic properties of (VO)2P2O7/γ-Al2O3, stainless steel coated catalyst in pcymene oxidation[J]. Applied Catalysis A:General, 2010, 373(1/2):132-139. [21] 谷东亮. SCR板式脱硝催化剂的工艺与性能研究[D]. 镇江:江苏科技大学, 2014. GU Dongliang. Study on the process and the performance of SCR plate-type de-NOx catalyst[D]. Zhenjiang:Jiangsu University of Science and Technology, 2014. [22] 王瑞, 归柯庭, 梁辉. Ce的掺杂对负载型催化剂LaMnO3/赤铁矿脱硝性能的影响[J]. 化工进展, 2016, 35(s2):192-199. WANG Rui, GUI Keting, LIANG Hui. Effect of Ce-doped on performance of supported perovskite catalyst LaMnO3/hematite for SCR of NO by NH3[J]. Chemical Industry and Engineering Progress, 2016, 35(s2):192-199. [23] 廖永进, 张亚平, 朱一闻, 等. WO3掺杂对V2O5/TiO2-SnO2催化剂NH3选择性催化还原NOx的影响[J]. 化工进展, 2017, 36(3):951-956. LIAO Yongjin, ZHANG Yaping, ZHU Yiwen, et al. Influence of WO3 doping on properties of V2O5/TiO2-SnO2 catalysts for selective catalytic reduction of NOx by NH3[J]. Chemical Industry and Engineering Progress, 2017, 36(3):951-956. [24] MARGOLIES J L, ROBERTS H C, LIPKIN D M, et al. Hybrid air plasma spray and slurry method of environmental barrier deposition:US20140037969[P]. 2014-02-06. [25] SARKA HOUDKOVA, SMAZALOVA E, PALA Z. Effect of heat treatment on the microstructure and properties of HVOF-sprayed Co-Cr-W coating[J]. Journal of Thermal Spray Technology, 2016, 25(3):546-557. [26] YANG X, ZHANG J, LI G. Cavitation erosion behaviour and mechanism of HVOF-sprayed NiCrBSi-(Cr3C2-NiCr) composite coatings[J]. Surface Engineering, 2016(5):1-8. [27] MATIKAINEN V, BOLELLI G, KOIVULUOTO H, et al. A study of Cr3C2-based HVOF and HVAF-sprayed coatings:microstructure and carbide retention[J]. Journal of Thermal Spray Technology, 2017, 26:1239-1256. [28] VERDIAN M M, RAEISSI K, SALEHI M. Corrosion performance of HVOF and APS thermally sprayed NiTi intermetallic coatings in 3.5% NaCl solution[J]. Corrosion Science, 2010, 52(3):1052-1059. [29] GUILEMANY J M, CINCA N, DOSTA S, et al. Corrosion behaviour of thermal sprayed nitinol coatings[J]. Corrosion Science, 2009, 51(1):171-180. [30] LIU M, DENG C M, DENG C G, et al. Densification of low temperature HVOF Ti coating[C]. International Thermal Spray Conference, Hamburg, 2011. [31] 林秋生. Ti-Ni合金涂层的制备及抗空蚀性能研究[D]. 广州:广东工业大学, 2014. LIN Qiusheng. Study on the fabrication and cavitation erosion resistance of Ti-Ni intermetallic coating[D]. Guangzhou:Guangdong University of Technology, 2014. [32] WANG Y, STELLA J, DARUT G, et al. APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion[J]. Journal of Alloys & Compounds, 2017, 699:1095-1103. [33] 邓春明, 周克崧, 刘敏, 等. 大气等离子喷涂Al2O3-3%TiO2涂层的性能[J]. 中国表面工程, 2010, 23(1):19-23. DENG Chunming, ZHOU Kesong, LIU Min, et al. Properties of air plasma sprayed Al2O3-3% TiO2 coatings[J]. China Surface Engineering, 2010, 23(1):19-23. [34] 李深厚, 郭智兴, 熊计, 等. APS/HVOF热喷涂WC基金属陶瓷涂层的微观组织与性能[J]. 四川大学学报(工程科学版), 2017(s2):238-243. LI Shenhou, GUO Zhixing, XIONG Ji, et al. Microstructure and properties of APS/HVOF thermal sprayed WC-based cermet coatings[J]. Advanced Engineering Sciences, 2017(s2):238-243. [35] 吴晓东, 翁端, 陈震, 等. 等离子喷涂NiCrAl/ZrO2过渡层对FeCrAl/γ-Al2O3结合性能的影响[J]. 清华大学学报(自然科学版), 2002, 42(10):1293-1296. WU Xiaodong, WEN Duan, CHEN Zhen, et al. Influence of plasma-sprayed NiCrAl/ZrO2 intermediate on adhesion of FeCrAl/γ-Al2O3[J]. Journal of Tsinghua University(Science & Technology), 2002, 42(10):1293-1296. [36] PRANEVICIUS L, PRANEVICIUS L L, VALATKEVICIUS P, et al. Plasma spray deposition of Al-Al2O3, coatings doped with metal oxides:catalytic applications[J]. Surface & Coatings Technology, 2000, 123(2/3):122-128. [37] SHEN G X, CHEN Y C, LIN C J. Corrosion protection of 316L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method[J]. Thin Solid Films, 2005, 489(1):130-136. [38] LIU L, ZHANG L, ZHANG Q, et al. Catalytic performance and kinetics of wire-mesh honeycomb catalyst for reduction of NO with NH3[J]. Journal of Nanoscience & Nanotechnology, 2014, 14(9):7199-7203. [39] PARVULESCU V I, PARVULESCU V, BOGHOSIAN S, et al. Selective catalytic reduction of NO with NH3 over mesoporous V2O5-TiO2-SiO2 catalysts[J]. Journal of Catalysis, 2003, 217(1):172-185. [40] FERRANDON M, BERG M, BJÖRNBOM E. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler[J]. Catalysis Today, 1999, 53(4):647-659. [41] ZHAO S, ZHANG J, WENG D, et al. A method to form well-adhered γ-Al2O3, layers on FeCrAl metallic supports[J]. Surface & Coatings Technology, 2003, 167(1):97-105. [42] GUO Y, SAKURAI M, KAMEYAMA H, et al. The effect of SO2 and H2O on the SCR-C3H6 of NO over a transition metals supported mesh-type alumite catalyst[J]. Journal of Chemical Engineering of Japan, 2004, 37(7):895-904. [43] GUO Y, SAKURAI M, KAMEYAMA H, et al. Preparation of alumite support and preliminary activity investigation for NO removal in SCR-HC over alumite catalyst[J]. Journal of Chemical Engineering of Japan, 2004, 36(12):1470-1479. [44] HWANG S H, DETTLING J C, GALLIGAN M P, et al. Catalytic metal plate:US6921738[P]. 2005-07-26. [45] KOROTKIKH O. Method for preparation of catalytic material for selective oxidation and catalyst members thereof:US20030083196[P]. 2003-05-01. [46] CHIU L H, LIN H A, CHEN C C, et al. Effect of aluminum coating on corrosion properties of AZ31 magnesium alloy[J]. Materials Science Forum, 2003, 419-422:909-914. [47] CHIU L H, CHEN C C, YANG C F. Improvement of corrosion properties in an aluminum-sprayed AZ31 magnesium alloy by a post-hot pressing and anodizing treatment[J]. Surface and Coatings Technology, 2005, 191(2):181-187. [48] YANG K S, SEONG CHOI J, AND S H L, et al. Development of Al/Al2O3-coated wire-mesh honeycombs for catalytic combustion of volatile organic compounds in air[J]. Industrial & Engineering Chemistry Research, 2004, 43(4):907-912. [49] SADEGHIMERESHT E, MARKOCSAN N, NYLEN P. A comparative study on Ni-based coatings prepared by HVAF, HVOF, and APS methods for corrosion protection applications[J]. Journal of Thermal Spray Technology, 2016, 25(8):1-13. [50] 张哲, 谢峻林, 方德, 等. CeO2在SCR低温脱硝催化剂中应用的研究进展[J]. 硅酸盐通报, 2014, 33(11):2891-2896. ZHANG Zhe, XIE Junlin, FANG De, et al. Research progress on application of CeO2 in SCR denitration catalyst at low temperature[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11):2891-2896. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |