[1] 吕召胜, 李亚, 姚利辉, 等. 聚合物基导热复合材料的研究进展[J]. 塑料助剂, 2015(4):5-10. LÜ Z S, LI Y, YAO L H, et al. Advances in research of thermal conductive composite based on polymer[J]. Plastics Additives, 2015(4):5-10.
[2] FENG X, LIU G, XU S, et al. 3-Dimensional anisotropic thermal transport in microscale poly(3-hexylthiophene) thin films[J]. Polymer, 2013, 54(7):1887-1895.
[3] LI Z, ZHANG L, QI R, et al. Improvement of the thermal transport performance of a poly(vinylidene fluoride) composite film including silver nanowire[J]. Journal of Applied Polymer Science, 2016, 133(25):43554.
[4] DENG S, WANG J, ZONG G, et al. Effect of chain structure on the thermal conductivity of expanded graphite/polymer composites[J]. RSC Advances, 2016, 6(12):10185-10191.
[5] HUANG T, ZENG X, YAO Y, et al. Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity[J]. RSC Advances, 2016, 6(42):35847-35854.
[6] MALLAKPOUR S, BEHRANVAND V. Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications[J]. European Polymer Journal, 2016, 84:377-403.
[7] KIM K, JU H, KIM J. Surface modification of BN/Fe3O4 hybrid particle to enhance interfacial affinity for high thermal conductive material[J]. Polymer, 2016, 91:74-80.
[8] ZHOU B, LUO W, YANG J Q, et al. Thermal conductivity of aligned CNT/polymer composites using mesoscopic simulation[J]. Composites Part A:Applied Science & Manufacturing, 2016, 90:410-416.
[9] KOSTAGIANNAKOPOULOU C, FIAMEGKOU E, SOTIRIADIS G, et al. Thermal conductivity of carbon nano reinforced epoxy composites[J]. Journal of Nanomaterials, 2016. DOI:10.1155/2016/1847325.
[10] TABKHPAZ M, SHAJARI S, MAHMOODI M, et al. Thermal conductivity of carbon nanotube and hexagonal boron nitride polymer composites[J]. Composites Part B:Engineering, 2016, 100:19-30.
[11] CHO E C, CHANG-JIAN C W, HSIAO Y S, et al. Three-dimensional carbon nanotube based polymer composites for thermal management[J]. Composites Part A:Applied Science & Manufacturing, 2016, 90:678-686.
[12] 周文英, 党智敏, 丁小卫. 聚合物基导热复合材料[M]. 北京:国防工业出版社, 2017. ZHOU W Y, DANG Z M, DING X W. Thermally conductive polymer composites[M]. Beijing:National Defense Industry Press, 2017.
[13] 孔娇月, 陈立新, 蔡聿锋. 导热高分子复合材料研究进展[J]. 中国塑料, 2011, 25(3):7-12. KONG J Y, CHEN L X, CAI Y F. Research development of thermally conductive polymer composites[J]. China Plastics, 2011, 25(3):7-12.
[14] 张丽丽, 丁慧敏, 张继堂, 等. 碳纳米管改性环氧树脂的导热和阻燃性能[J]. 应用化学, 2017, 34(1):46-53. ZHANG L L, DING H M, ZHANG J T, et al. Thermal conductivity and flame retardancy of carbon nanotube modified epoxy resin[J]. Chinese Journal of Applied Chemistry, 2017, 34(1):46-53.
[15] 李宾, 刘妍, 孙斌, 等. 聚合物基导热复合材料的性能及导热机理[J]. 化工学报, 2009, 60(10):2650-2655. LI B, LIU Y, SUN B, et al. Properties and heat-conduction mechanism of thermally conductive polymer composites[J]. CIESC Journal, 2009, 60(10):2650-2655.
[16] BOUCHARD J, CAYLA A, DEVAUX E, et al. Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites[J]. Composites Science and Technology, 2013, 86(7):177-184.
[17] 辛斌杰, 陈卓明, 吴湘济, 等. 聚砜酰胺/碳纳米管复合材料的热稳定性研究[J]. 材料导报, 2012, 26(16):31-34. XIN B J, CHEN Z M, WU X J, et al. Study on the thermal stability of PSA/CNT composites[J]. Materials Review, 2012, 26(16):31-34.
[18] GHARAGOZLOO-HUBMANN K, BODEN A, CZEMPIELGREGOR J F. Filler geometry and interface resistance of carbon nanofibres:key parameters in thermally conductive polymer composites[J]. Applied Physics Letters, 2013, 102(21):213103.
[19] KIM H S, JANG J U, YU J, et al. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes[J]. Composites Part B:Engineering, 2015, 79:505-512.
[20] WANG X, JIANG Q, XU W, et al. Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites[J]. Carbon, 2013, 53:145-152.
[21] FUJⅡ M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical Review Letters, 2005, 95(6):065502.
[22] GONG F, BUI K, PAPAVASSILIOU D V, et al. Thermal transport phenomena and limitations in heterogeneous polymer composites containing carbon nanotubes and inorganic nanoparticles[J]. Carbon, 2014, 78(18):305-316.
[23] MAHMOODI M, LEE Y H, MOHAMAD A, et al. Effect of flow induced alignment on the thermal conductivity of injection molded carbon nanotube-filled polystyrene nanocomposites[J]. Polymer Engineering & Science, 2014, 55(4):171-192.
[24] JIANG Q, WU L W. Property enhancement of aligned carbon nanotube/polyimide composite by strategic prestraining[J]. Journal of Reinforced Plastics & Composites, 2016, 35(4):287-294.
[25] DASTYUK V, TROTSENKO S, REICH S. Carbon-nanotube-polymer nanofibers with high thermal conductivity[J]. Carbon, 2013, 52:605-608.
[26] LI B, DONG S, WU X, et al. Anisotropic thermal property of magnetically oriented carbon nanotube/graphene polymer composites[J]. Composites Science and Technology, 2016, 147:52-61.
[27] DUAN J K, SHAO S X, LI Y, et al. Polylactide/graphite nanosheets/MWCNTs nanocomposites with enhanced mechanical, thermal and electrical properties[J]. Iranian Polymer Journal, 2012, 21(2):109-120.
[28] XU R, CHEN M, ZHANG F, et al. High thermal conductivity and low electrical conductivity tailored in carbon nanotube(carbon black)/polypropylene(alumina) composites[J]. Composites Science and Technology, 2016, 133:111-118.
[29] KIM K, KIM J. BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating[J]. Polymer, 2016, 101:168-175.
[30] CHE J, WU K, LIN Y, et al. Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy[J]. Composites Part A:Applied Science & Manufacturing, 2017, 99:32-40.
[31] PANG H, PIAO Y Y, TAN Y Q, et al. Thermoelectric behaviour of segregated conductive polymer composites with hybrid fillers of carbon nanotube and bismuth telluride[J]. Materials Letters, 2013, 107(15):150-153.
[32] PANG H, BAO Y, YANG S G, et al. Preparation and properties of carbon nanotube/binary-polymer composites with a double-segregated structure[J]. Journal of Applied Polymer Science, 2014, 131(2):39789.
[33] ZHONG S L, ZHOU Z Y, ZHANG K, et al. Formation of thermally conductive networks in isotactic polypropylene/hexagonal boron nitride composites via "Bridge Effect" of multi-wall carbon nanotubes and graphene nano platelets[J]. RSC Advances, 2016, 6(101):98571-98580.
[34] CHOI J H, SONG H J, JUNG J, et al. Effect of crosslink density on thermal conductivity of epoxy/carbon nanotube nanocomposites[J]. Journal of Applied Polymer Science, 2016, 134(4):44257.
[35] XIE F, QI S H, YANG R, et al. High thermal conductive m-xylylenediamine functionalized multiwall carbon nanotubes/epoxy resin composites[J]. Journal of Applied Polymer Science, 2015, 132(2):41255.
[36] WANG H, TAZEBAY A S, YANG G, et al. Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes[J]. Carbon, 2016, 106:152-157.
[37] NI Y, HAN H, VOLZ S, et al. Nanoscale azide polymer functionalization:a robust solution for suppressing the carbon nanotube-polymer matrix thermal interface resistance[J]. Journal of Physical Chemistry C, 2015, 119:12193-12198.
[38] LOPES P E C, SOARES B G. Conducting epoxy networks modified with non-covalently functionalized multi-walled carbon nanotube with imidazolium-based ionic liquid[J]. Journal of Applied Polymer Science, 2016, 133(38):43976.
[39] YU W Q, FU J F, CHEN L Y, et al. Enhanced thermal conductive property of epoxy composites by low mass fraction of organic-inorganic multilayer covalently grafted carbon nanotubes[J]. Composites Science & Technology, 2016, 125:90-99.
[40] ZHANG W B, XU X L, YANG J H, et al. High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone[J]. Composites Science and Technology, 2015, 106:1-8.
[41] HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review[J]. Progress in Polymer Science, 2011, 36(7):914-944.
[42] LUO F, WU K, GUO H, et al. Simultaneous reduction and surface functionalization of graphene oxide for enhancing flame retardancy and thermal conductivity of mesogenic epoxy composites[J]. Polymer International, 2017, 66(1):98-107.
[43] MORISHITA T, KATAGIRI Y, MATSUNAGA T, et al. Design and fabrication of morphologically controlled carbon nanotube/polyamide-6-based composites as electrically insulating materials having enhanced thermal conductivity and elastic modulus[J]. Composites Science and Technology, 2017, 142:41-49.
[44] HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites:a review[J]. Progress in Polymer Science, 2011, 36(7):914-944.
[45] NGO I L, VATTIKUTI S V P, CHAN B. Effects of thermal contact resistance on the thermal conductivity of core-shell nanoparticle polymer composites[J]. International Journal of Heat & Mass Transfer, 2016, 102:713-722.
[46] HUANG H, CHEN L, VARSHNEY V, et al. Investigation of phonon transport and thermal boundary conductance at the interface of functionalized SWCNT and poly(ether-ketone)[J]. Journal of Applied Physics, 2016, 120(9):914-944.
[47] HUSSAIN A R J, ALAHYARI A A, EASTMAN S A, et al. Review of polymers for heat exchanger applications:factors concerning thermal conductivity[J]. Applied Thermal Engineering, 2016, 113:1118-1127. |