Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (02): 497-504.DOI: 10.16085/j.issn.1000-6613.2017-0963
Previous Articles Next Articles
JIA Shuang, YING Hao, SUN Yunjuan, SUN Ning, XU Wei, XU Yu, NING Siyun
Received:
2017-05-23
Revised:
2017-06-29
Online:
2018-02-05
Published:
2018-02-05
贾爽, 应浩, 孙云娟, 孙宁, 徐卫, 许玉, 宁思云
通讯作者:
应浩,研究员,硕士生导师,研究方向为生物质能转化技术开发与工业应用。
作者简介:
贾爽(1992-),男,硕士研究生。
基金资助:
CLC Number:
JIA Shuang, YING Hao, SUN Yunjuan, SUN Ning, XU Wei, XU Yu, NING Siyun. Research advance in biomass steam gasification for hydrogen-rich syngas and its application[J]. Chemical Industry and Engineering Progress, 2018, 37(02): 497-504.
贾爽, 应浩, 孙云娟, 孙宁, 徐卫, 许玉, 宁思云. 生物质水蒸气气化制取富氢合成气及其应用的研究进展[J]. 化工进展, 2018, 37(02): 497-504.
[1] SIKARWAR V S, ZHAO M, CLOUGH P, et al. An overview of advances in biomass gasification[J]. Energy Environ. Sci., 2016, 9(10):2939-2977. [2] ELIF D, NEZIHE A. Hydrogen production by supercritical water gasification of fruit pulp in the presence of Ru/C[J]. International Journal of Hydrogen Energy, 2016, 41(19):8073-8083. [3] KUBA M, HAVLIK F, KIMBAUER F, et al. Influence of bed material coatings on the water-gas-shift reaction and steam reforming of toluene as tar model compound of biomass gasification[J]. Biomass and Bioenergy, 2016, 89:40-49. [4] ZHANG Y, GONG X, ZHANG B, et al. Potassium catalytic hydrogen production in sorption enhanced gasification of biomass with steam[J]. International Journal of Hydrogen Energy, 2014, 39(9):4234-4243. [5] KANG K, AZARGOHAR R, DALAI A K, et al. Systematic screening and modification of Ni based catalysts for hydrogen generation from supercritical water gasification of lignin[J]. Chemical Engineering Journal, 2016, 283:1019-1032. [6] 杨伯伦,李星星,伊春梅. 合成天然气技术进展[J]. 化工进展, 2011, 30(1):111-116. YANG B L, LI X X, YING C M, et al. Technological progress of synthetic natural gas[J]. Chemical Industry and Engineering Progress, 2011, 30(1):111-116. [7] ZHANG B, ZHANG L, YANG Z, et al. Hydrogen-rich gas production from wet biomass steam gasification with CaO/MgO[J]. International Journal of Hydrogen Energy, 2015, 40(29):8816-8823. [8] FERMOSO J, HE L, CHEN D. Production of high purity hydrogen by sorption enhanced steam reforming of crude glycerol[J]. International Journal of Hydrogen Energy, 2012, 37(19):14047-14054. [9] DUMAN G, UDDIN M A, YANIK J. Hydrogen production from algal biomass via steam gasification[J]. Bioresource Technology, 2014, 166:24-30. [10] SMOLINSKI A, STANCZYKS K, HOWANIEC N. Steam gasification of selected energy crops in a fixed bed reactor[J]. Renewable Energy, 2010, 35(2):397-404. [11] FRANCO C, PINTO F, GULYURTLU I, et al. The study of reactions influencing the biomass steam gasification process[J]. Fuel, 2003, 82(7):835-842. [12] 李琳娜. 生物质高温水蒸气气化制备富氢燃气的研究[D].南京:中国林业科学研究院林产化学工业研究所, 2011. LI L N. Researches on high temperature steam gasification of biomass to produce hydrogen-rich gas[D]. Nanjing:Chinese Academy of Forestry, 2011. [13] BOURAOUI Z, DUPONT C, JEGUIRIM M, et al. CO2 gasification of woody biomass chars:the influence of K and Si on char reactivity[J]. Comptes Rendus Chimie, 2016, 19(4):457-465. [14] LI H, CHEN Z, HUO C, et al. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge[J]. Energy Conversion and Management, 2015, 106:1212-1218. [15] 徐卫,孙宁,应浩,等. 木屑半焦高温水蒸气气化制备富氢燃气研究[J]. 林产化学与工艺, 2017, 37(3):1-9. XU W, SUN N, YING H, et al. Sawdust-char high temperature steam gasification of hydrogen rich gas[J]. Chemistry and Industry of Forest Products, 2017, 37(3):1-9. [16] NIU Y, HAN F, CHEN Y, et al. Experimental study on steam gasification of pine particles for hydrogen-rich gas[J]. Journal of the Energy Institute, 2016, 90(5):292-302. [17] GAI C, GUO Y, LIU T, et al. Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge[J]. International Journal of Hydrogen Energy, 2016, 41(5):3363-3372. [18] HAN L, WANG Q, YANG Y, et al. Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed[J]. International Journal of Hydrogen Energy, 2011, 36(8):4820-4829. [19] HAN L, WANG Q, LUO Z, et al. H2 rich gas production via pressurized fluidized bed gasification of sawdust with in situ CO2 capture[J]. Applied Energy, 2013, 109:36-43. [20] HU M, GUO D, MA C, et al. Hydrogen-rich gas production by the gasification of wet MSW (municipal solid waste) coupled with carbon dioxide capture[J]. Energy, 2015, 90(1):857-863. [21] KLINGHOFFER N B, CASTALDI M J, ZZIHOU A. Influence of char composition and inorganics on catalytic activity of char from biomass gasification[J]. Fuel, 2015, 157:37-47. [22] SUTTON D, KELLEHER B, ROSS J. Review of literature on catalysts for biomass gasification[J]. Fuel Processing Technology, 2001, 73(3):155-173. [23] PENG W X, WANG L S, MIRZAEE M, et al. Hydrogen and syngas production by catalytic biomass gasification[J]. Energy Conversion and Management, 2017, 135:270-273. [24] JIANG L, HU S, WANG Y. Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass[J]. International Journal of Hydrogen Energy, 2015, 40(45):15460-15469. [25] KOPYSCINSKI J, LAM J, MIMS C A. K2CO3 catalyzed steam gasification of ash-free coal. Studying the effect of temperature on carbon conversion and gas production rate using a drop-down reactor[J]. Fuel, 2014, 128:210-219. [26] CAO J-P, HUANG X, ZHAO X-Y, et al. Low-temperature catalytic gasification of sewage sludge-derived volatiles to produce clean H2-rich syngas over a nickel loaded on lignite char[J]. International Journal of Hydrogen Energy, 2014, 39(17):9193-9199. [27] PHUHIRAN C, TAKARADA T, CHAIKLANGMUANG S. Hydrogen-rich gas from catalytic steam gasification of eucalyptus using nickel-loaded Thai brown coal char catalyst[J]. International Journal of Hydrogen Energy, 2014, 39(8):3649-3656. [28] YAO D, HU Q, WANG D, et al. Hydrogen production from biomass gasification using biochar as a catalyst/support[J]. Bioresource Technology, 2016, 216:159-164. [29] SHOKROLLAHI YANCHESHMEH M, RADFARNIA H R, ILIUTA M C. High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process[J]. Chemical Engineering Journal, 2016, 283:420-444. [30] MAHISHI M, GOSWAMI D. An experimental study of hydrogen production by gasification of biomass in the presence of a CO2 sorbent[J]. International Journal of Hydrogen Energy, 2007, 32(14):2803-2808. [31] UDOMSIRICHAKORN J, BASU P, ABDUL SALAM P, et al. CaO-based chemical looping gasification of biomass for hydrogen-enriched gas production with in situ CO2 capture and tar reduction[J]. Fuel Processing Technology, 2014, 127:7-12. [32] MOSTAFAVI E, MAHINPEY N, MANOVIC V. A novel development of mixed catalyst-sorbent pellets for steam gasification of coal chars with in situ CO2 capture[J]. Catalysis Today, 2014, 237:111-117. [33] ZAMBONI I, COURSON C, KIENNEMANN A. Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming[J]. Applied Catalysis B:Environmental, 2017, 203:154-165. [34] SONG M, JIN B, XIAO R, et al. The comparison of two activation techniques to prepare activated carbon from corn cob[J]. Biomass and Bioenergy, 2013, 48:250-256. [35] PETERSON S C, JACKSON M A. Simplifying pyrolysis:using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media[J]. Industrial Crops and Products, 2014, 53:228-235. [36] 涂军令. 木屑/木屑炭高温水蒸气气化制备合成气研究[D]. 南京:中国林业科学研究院林产化学工业研究所, 2012:35-36. TU J L. Production of synthesis gas by high temperature steam gasification of sawdust/sawdust-derived char[D].Nanjing:Chinese Academy of Forestry, 2012:35-36. [37] ZHAI M, ZHANG Y, DONG P, et al. Characteristics of rice husk char gasification with steam[J]. Fuel, 2015, 158:42-49. [38] AHMED I I, GUPTA A K. Kinetics of woodchips char gasification with steam and carbon dioxide[J]. Applied Energy, 2011, 88(5):1613-1619. [39] HLA S S, LOPES R, ROBERTS D. The CO2 gasification reactivity of chars produced from Australian municipal solid waste[J]. Fuel, 2016, 185:847-854. [40] LE C D, KOLACZKOWSKI S T. Steam gasification of a refuse derived char:reactivity and kinetics[J]. Chemical Engineering Research and Design, 2015, 102:389-398. [41] CHAUDHARI S T, DALAI A K, BAKHSHI N N. Production of hydrogen and/or syngas(H2+CO) via steam viasteam gasification of biomass-derived chars[J]. Energy Fuels, 2003, 17(4):1062-1067. [42] WAHEED Q M K, WU C, WILLIAMS P T. Hydrogen production from high temperature steam catalytic gasification of bio-char[J]. Journal of the Energy Institute, 2016, 89(2):222-230. [43] GAI C, CHEN M, LIU T, et al. Gasification characteristics of hydrochar and pyrochar derived from sewage sludge[J]. Energy, 2016, 113:957-965. [44] NZIHOU A, STANMORE B, SHARROCK P. A review of catalysts for the gasification of biomass char, with some reference to coal[J]. Energy, 2013, 58:305-317. [45] WOOD B J, SANCIER K M. The mechanism of catalytic gasification of coal char:a critical review[J]. Catal. Rev., 1984, 26(2):463-470. [46] WEN W Y. Mechanisms of alkali metal catalysis in gasification of coal, char or graphite[J]. Catal. Rev., 1980, 22(1):1-28. [47] FRERIKS I L C, VAN WECHEM H M H, STUIVER J C M, et al. Potassium-catalyzed gasification of carbon with steam:a temperature-programmed desorption and Fourier Transform infrared study[J]. Fuel, 1981, 60(6):463-470. [48] WANG J, JIANG M, YAO Y, et al. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel, 2009, 88(9):1572-1579. [49] WEILAND F, HEDMAN H, MARKLUND M, et al. Pressurized oxygen blown entrained-flow gasification of wood powder[J]. Energy & Fuels, 2013, 27:932-941. [50] AL-RAHBI A S, WILLIAMS P T. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char[J]. Applied Energy, 2017, 190:501-509. [51] MURADOV N, GUJAR A, BAIK J, et al. Production of Fischer-Tropsch hydrocarbons via oxygen-blown gasification of charred pinewood pellets[J]. Fuel Processing Technology, 2015, 140:236-244. [52] LEE C H, LEE K B. Application of one-body hybrid solid pellets to sorption-enhanced water gas shift reaction for high-purity hydrogen production[J]. International Journal of Hydrogen Energy, 2014, 39(31):18128-18134. [53] SORIA M A, TOSTI S, MENDES A, et al. Enhancing the low temperature water-gas shift reaction through a hybrid sorption-enhanced membrane reactor for high-purity hydrogen production[J]. Fuel, 2015, 159:854-863. [54] DOU B, WANG C, CHEN H, et al. Continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(27):11902-11909. [55] 武宏香,赵增立,王小波,等. 生物质气化制备合成天然气技术的研究进展[J]. 化工进展, 2013, 32(1):83-90. WU H X, ZHAO Z L, WANG X B, et al. Technical development on synthetic natural gas production from biomass(Bio-SNG)[J]. Chemical Industry and Engineering Progress, 2013, 32(1):83-90. [56] 李楠,侯蕾,杜霞茹,等. 合成天然气Ni基甲烷化催化剂的研究进展[J]. 天然气化工, 2015, 40(3):76-82. LI N, HOU L, DU X R, et al. Research progress on Ni base methanation catalyst for natural gas[J]. Natural Gas Chemical Industry, 2015, 40(3):76-82. [57] CHENG C B, SHEN D K, XIAO R. Methanation of syngas(H2/CO) over the different Ni-based catalysts[J]. Fuel, 2017, 189:419-427. [58] BIAN Z, MENG X, TAO M, et al. Uniform Ni particles on amino-functionalized SBA-16 with excellent activity and stability for syngas methanation[J]. Journal of Molecular Catalysis A:Chemical, 2016, 417:184-191. [59] LUCCHINI M A, TESTINO A, KAMBOLIS A, et al. Sintering and coking resistant core-shell microporous silica-nickel nanoparticles for CO methanation:towards advanced catalysts production[J]. Applied Catalysis B:Environmental, 2016, 182:94-101. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[3] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | WANG Haoran, YIN Quanyu, FANG Ming, HOU Jianlin, LI Jun, HE Bin, ZHANG Mingyue. Optimization of near critical-water treatment process of tobacco stems [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5019-5027. |
[6] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[7] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[8] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[9] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[10] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[11] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[12] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
[13] | ZHANG Fang, GUO Kunpeng, LIANG Chunping, YOU Xuerui, ZHANG Zhichao. Design, synthesis and application research for an organic luminescent molecule with aggregation induced emission [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3097-3104. |
[14] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[15] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1547
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 551
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |