[1] ALEXANDER B D,KULESZA P J,RUTKOWSKA L,et al. Metal oxide photoanodes for solar hydrogen production[J]. J. Mater. Chem.,2008,18:2298-2303.
[2] BAK T,NOWOTNY J,REKAS M,et al. Photo-electrochemical hydrogen generation from water using solar energy[J]. Int. J. Hydrogen Energy,2002,27:991-1022.
[3] SEⅡCHIRO N,FUJISHIMA A,HONDA K. Experimental evidence for the hydrogen evolution site in photocatalytic process on Pt/TiO2[J]. Chemical Physics Letters,1983,102:464-465.
[4] SAYAMA K,ARAKAWA H. Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts[J]. J. Photochem Photobio A:Chem.,1994,77:243-247.
[5] YU H,SUN D,LIU J,et al. Monodisperse mesoporous Ta2O5 colloidal spheres as a highly effective photocatalyst for hydrogen production[J]. International Journal of Hydrogen Energy,2016,41:17225-17232.
[6] SHIBLI S M A,ANUPAMA V R,ARUN P S,et al. Synthesis and development of nano WO3 catalyst incorporated Ni-P coating for electrocatalytic hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2016,41:10090-10102.
[7] WANG Y Q,ZHANG Z J,ZHU Y,et al. Nanostructured VO2 photocatalysts for hydrogen production[J]. ACS Nano,2008,2:1492-1496
[8] LIU Y,XIE L,LI Y,et al. Synthesis and high photocatalytic hydrogen production of SrTiO3 nanoparticles from water splitting under UV irradiation[J]. J. Power Sources,2008,183:701-707.
[9] KATO H,ASAKURA K,KUDO A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. J. Am. Chem. Soc.,2003,125:3082-3089.
[10] JANET C M,VISWANATH R P. Large scale synthesis of CdS nanorods and its utilization in photo-catalytic H2 production[J]. Nanotech,2006,17:5271-5277.
[11] LI X F,TANG C W,ZHENG Q,et al. Amorphous MoSx on CdS nanorods for highly efficient photocatalytic hydrogen evolution[J]. Journal of Solid State Chemistry,2017,246:230-236.
[12] THAKURA S,KSHETRIA T,KIM N H,et al. Sunlight-driven sustainable production of hydrogen peroxide using a CdS-graphene hybrid photocatalyst[J]. Journal of Catalysis,2017,345:78-86.
[13] DONG M,ZHOU P,JIANG C J,et al. First-principles investigation of Cu-doped ZnS with enhanced photocatalytic hydrogen production activity[J]. Chemical Physics Letters,2017,668:1-6.
[14] ZHANG X H,JING D W,LIU M C,et al. Efficient photocatalytic H2 production under visible light irradiation over Ni doped CdxZnxS microsphere photocatalysts[J]. Catal. Commun.,2008,9:1720-1724.
[15] SATO J,SAITO N,YAMADA Y,et al. RuO2-loaded β-Ge3N4 as a non-oxide photocatalyst for overall water splitting[J]. J. Am. Chem. Soc.,2005,127:4150-4151.
[16] MAEDA K,TERAMURA K,LU D L,et al. Photocatalyst releasing hydrogen from water[J]. Nature,2006,440:295-295.
[17] CHOI J,RYU S Y,BALCERSKI W,et al. Photocatalytic production of hydrogen on Ni/NiO/KNbO3/CdS nanocomposites using visible light[J]. J. Mater. Chem.,2008,18:2371-2378.
[18] WANG N,LI J,WU L P,et al. MnO2 and carbon nanotube co-modified C3N4 composite catalyst for enhanced water splitting activity under visible light irradiation[J]. International Journal of Hydrogen Energy,2016,41:22743-22750.
[19] FUJISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
[20] GONG D,GRIMES C A,VARGHESE O K,et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J. Mater. Res.,2001,16(12):3331-3334.
[21] PAULOSE M,MOR G K,VARGHESE O K,et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays[J]. Journal of Photochemistry and Photobiology A:Chemistry,2006,178:8-15.
[22] ZHANG Z H,HOSSAIN M K,TAKAHASHI T. Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation[J]. International Journal of Hydrogen Energy,2010,35:8528-8535.
[23] GONG J J,LAI Y K,LIN C J. Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting[J]. Electrochimica Acta,2010,55:4776-4782.
[24] XU C K,SHABAN Y A,WILLIAM B I J,et al. Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting[J]. Solar Energy Materials & Solar Cells,2007,91:938-943.
[25] RAJA K S,MISRA M,MAHAJAN V K,et al. Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light[J]. Journal of Power Sources,2006,161:1450-1457.
[26] JIA F Z,YAO Z P,JIANG Z H,et al. Preparation of carbon coated TiO2 nanotubes film and its catalytic application for H2 generation[J],Catalysis Communications,2011,12:497-501.
[27] SUN S C,ZHANG J J,GAO P,et al. Full visible-light absorption of TiO2 nanotubes induced by anionic S22- doping and their greatly enhanced photocatalytic hydrogen production abilities[J]. Applied Catalysis B:Environmental,2017,206:168-174.
[28] 宁成云,王玉强,郑华德,等.Cu掺杂二氧化钛纳米管阵列的研究[J].硅酸盐通报,2009,28(4):775-778. NING C Y,WANG Y Q,ZHENG H D,et al. Research on Cu-doped TiO2 nanotube arrays[J]. Bulletin of the Chinese Ceramic Society,2009,28(4):775-778.
[29] 张鹏,贾立山,李清彪,等. 金红石相含量对混晶纳米TiO2光催化分解水制氢的影响[J]. 化工进展,2008,27(9):1473-1476. ZHANG P,JIA L S,LI Q B,et al. Effect of rutile content on photocatalytic water-splitting for hydrogen production over composite-crystal nano-TiO2[J]. Chemical Industry and Engineering Progress,2008,27(9):1473-1476.
[30] LIN C H,LEE C H,CHAO J H,et al. Photocatalytic generation of H2 gas from neat ethanol over Pt/TiO2 nanotube catalysts[J]. Catal Lett.,2004,98:61-66.
[31] NAM W,HAN G Y. Preparation and characterization of anodized Pt-TiO2 nanotube arrays for water splitting[J]. J. Chem. Eng. Jpn.,2007,40:266-269.
[32] ALAMKHAN M,YANG O B. Photocatalytic water splitting for hydrogen production under visible light on Ir and Co ionized titania nanotube[J]. Catalysis Today,2009,146:177-182.
[33] FORNARI A M D,ARAUJO M B D,DUARTE C B,et al. Photocatalytic reforming of aqueous formaldehyde with hydrogen generation over TiO2 nanotubes loaded with Pt or Au nanoparticles[J]. International Journal of Hydrogen Energy,2016,41:11599-11607.
[34] 康力敏,刘恩周,吴丰. 银表面等离子体效应增强TiO2纳米管阵列光解水制氢[J]. 化工进展,2012,31(s1):350-353. KANG L M,LIU E Z,WU F. Study of plasma-enhanced hydrogen generation by water splitting of Ag nanoparticals loaded on TiO2 nanotubes array[J]. Chemical Industry and Engineering Progress,2012,31(s1):350-353.
[35] 蒋淇忠,吴省,蒋彦之,等.可见光下卟啉敏化TiO2纳米管光催化分解水制氢[C]. 2008 International Hydrogen Forum Programme and Abstract,2008. JIANG Q Z,WU S,JIANG Y Z,et al. Photocatalytic decomposition of water to hydrogen by porphyrin sensitized TiO2 nanotube under visible light[C]. 2008 International Hydrogen Forum Programme and Abstract,2008.
[36] LI C L,YUAN J,HAN B Y,et al. TiO2 nanotubes incorporated with CdS for photocatalytichydrogen production from splitting water under visible light irradiation[J]. International Journal of Hydrogen Energy,2010,35:7073-7079.
[37] XU S P,DU J H,LIU J C,et al. Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water[J]. International Journal of Hydrogen Energy,2011,36:6560-6568.
[38] ZHOU X M,LICKLEDERER M,SCHMUKI P. Thin MoS2 on TiO2 nanotube layers:an efficient co-catalyst/harvesting system for photocatalytic H2 evolution[J]. Electrochemistry Communications,2016,73:33-37.
[39] SUN W X,WANG D A,RAHMAN Z U,et al. 3D hierarchical WO3 grown on TiO2 nanotube arrays and their photoelectrochemical performance for water splitting[J]. Journal of Alloys and Compounds,2017,695:2154-2159.
[40] RADECKA M,WNUK A,TRENCZEK-ZAJAC A,et al. TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy,2015,40:841-851.
[41] SU E C,HUANG B S,WEY M Y. Enhanced optical and electronic properties of a solar light-responsive photocatalyst for efficient hydrogen evolution by SrTiO3/TiO2 nanotube combination[J]. Solar Energy,2016,134:52-63.
[42] WANG W C,LI F,ZHANG D Q,et al. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays[J]. Applied Surface Science, 2016,362:490-497.
[43] KUMAR D P, LAKSHMANA REDDY N,KARTHIK M,et al. Solar light sensitized p-Ag2O/n-TiO2 nanotubes heterojunction photocatalysts for enhanced hydrogen production in aqueous-glycerol solution[J]. Solar Energy Materials and Solar Cells,2016,154:78-87.
[44] 张胜寒,梁可心,檀玉. 不同形态铈改性TiO2纳米管阵列制备及可见光光电响应性质[J]. 物理化学学报,2011,27(11):2726-2730. ZHANG S H,LIANG K X,TAN Y. Preparation of TiO2 nanotube arrays with various cerium mixing morphology and photoelectrochemistry response in visible light[J]. Acta Physico-Chimica Sinica,2011,27(11):2726-2730.
[45] 张胜寒,梁可心,檀玉.电化学阻抗谱法研究铈改性TiO2纳米管阵列光电极裂解水产氢动力学[J]. 化学学报,2012,70(9):1109-1116. ZHANG S H,LIANG K X,TAN Y. Dynamics sdudy on the cerium and oxidative cerium modified TiO2 nanotube arrays for hydrogen production by water splitting using electrochemical impedance spectrum[J]. Acta Chimica Sinica,2012,70(9):1109-1116.
[46] TAN Y,ZHANG S H,SHI R X,et al. Visible light active Ce/Ce2O3/CeO2/TiO2 nanotube arrays for efficient hydrogen production by photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2016,41(4):5437-5444.
[47] XIE M Y,SU K Y,PENG X Y,et al. Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2-ZnO under visible light[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,70:161-167.
[48] CHAN C H,SAMIKKANNU P,WANG H W. Fe2O3/CdS co-sensitized titania nanotube for hydrogen generation from photocatalytic splitting water[J]. International Journal of Hydrogen Energy,2016,41:17818-17825. |