Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (11): 4043-4050.DOI: 10.16085/j.issn.1000-6613.2017-0432
Previous Articles Next Articles
A Shan, YU Dandan, BAI Jie, ZHENG Jiawei, LI Chunping
Received:
2017-03-16
Revised:
2017-07-27
Online:
2017-11-05
Published:
2017-11-05
阿山, 于丹丹, 白杰, 郑家威, 李春萍
通讯作者:
白杰,博士,教授,主要研究方向为新型纳米催化剂的制备。
作者简介:
阿山(1978-),男,博士研究生,主要研究方向为光催化。E-mail:nmas@163.com。
基金资助:
CLC Number:
A Shan, YU Dandan, BAI Jie, ZHENG Jiawei, LI Chunping. Research progress on loading and modification of TiO2 based photocatalyst in environmental field[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4043-4050.
阿山, 于丹丹, 白杰, 郑家威, 李春萍. 环境领域的二氧化钛基光催化剂负载和改性技术研究进展[J]. 化工进展, 2017, 36(11): 4043-4050.
[1] LIU S,TANG Z R,SUN Y,et al.One-dimension-based spatially ordered architectures for solar energy conversion[J].Chemical Society Reviews,2015,44(15):5053-5075. [2] CHEN Q,SHI H,SHI W,et al.Enhanced visible photocatalytic activity of titania-silica photocatalysts:effect of carbon and silver doping[J].Catalysis Science & Technology,2012,2(6):1213-1220. [3] KIM C H,KIM B H,YANG K S.TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis[J].Carbon,2012,50(7):2472-2481. [4] KUWAHARA Y,YAMASHITA H.Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials[J]. Journal of Materials Chemistry,2011,21(8):2407-2416. [5] 廖振华,陈建军,姚可夫,等.纳米TiO2光催化剂负载化的研究进展[J].无机材料学报,2004,19(1):17-24. LIAO Z H,CHEN J J,YAO K F,et al.Progress of nanometer-TiO2 photocatalyst immobilization[J]. Journal of Inorganic Materials,2004,19(1):17-24. [6] KIBOMBO H S,PENG R,RASALINGAM S,et al.Versatility of heterogeneous photocatalysis:synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides[J].Catalysis Science & Technology,2012,2(9):1737-1766. [7] LI Y J,CHEN W.Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2-zeolite surface composite catalysts:effects of photocatalytic condition on degradation efficiency[J].Catalysis Science & Technology,2011,1(5):802-809. [8] LI Y Z,KIM S J.Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability[J]. Journal of Physical Chemistry B,2005,109(25):12309-12315. [9] HSIEN Y H,CHANG C F,CHEN Y H,et al.Photodegradation of aromatic pollutants in water over TiO supported on molecular sieves[J].Applied Catalysis B:Environmental,2001,31(4):241-249. [10] ZHAO X,LV L,PAN B,et al.Polymer-supported nanocomposites for environmental application:a review[J].Chemical Engineering Journal,2011,170(2):381-394. [11] SU C,TONG Y,ZHANG M,et al.TiO2 nanoparticles immobilized on polyacrylonitrile nanofibers mats:a flexible and recyclable photocatalyst for phenol degradation[J].RSC Advances,2013,3(20):7503-7512. [12] IM J S,KIM M I,LEE Y S.Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation[J]. Materials Letters,2008,62(1):3652-3655. [13] ESPINO-ESTÉVEZ M R,FERNÁNDEZ-RODRÍGUEZ C,GONZÁLEZ-DÍAZ O M,et al.Enhancement of stability and photoactivity of TiO2 coatings on annular glass reactors to remove emerging pollutants from waters[J].Chemical Engineering Journal,2015,279:488-497. [14] ERJAVEC B,HUDOKLIN P,PERC K,et al.Glass fiber-supported TiO2 photocatalyst:efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs[J].Applied Catalysis B:Environmental,2016,183:149-158. [15] GARCIA-GOMEZ N A,GARCIA-GUTIERREZ D I,SEPULVEDA-GUZMAN S,et al.Enhancement of electrochemical properties on TiO2/carbon nanofibers by electrospinning process[J]. Journal of Materials Science:Materials in Electronics,2013,24(10):3976-3984. [16] ZHANG H,LV X J,LI Y M,et al.P25-graphene composite as a high performance photocatalyst[J].ACS Nano,2010,4(1):380-386. [17] OUZZINE M,LILLO-RÓDENAS M A,LINARES-SOLANO A.Carbon nanofibres as substrates for the preparation of TiO2 nanostructured photocatalysts[J]. Applied Catalysis B:Environmental,2012,127:291-299. [18] PANT B,PANT H R,PARK M,et al.Electrospun CdS-TiO2 doped carbon nanofibers for visible-light-induced photocatalytic hydrolysis of ammonia borane[J].Catalysis Communications,2014,50(14):63-68. [19] YU D D,BAI J,LIANG H O,et al.Fabrication of AgI-TiO2 loaded on carbon nanofibers and its excellent recyclable and renewable performance in visible-light catalysis[J]. Journal of Molecular Catalysis A:Chemical,2016,420:1-10. [20] 唐玉朝,黄显怀,俞汉青,等.非金属掺杂改性TiO2 光催化剂的机理[J].化学进展,2007,19(2):225-233. TANG Y C,HUANG X H,YU H Q,et al.Nonmetal element doping mechanisms of titanium oxide photocatalyst[J]. Progress in Chemistry,2007,19(2):225-233. [21] CHEN X B,BURDA C.The electronic origin of the visible-light absorption properties of C-,N-and S-doped TiO2 nanomaterials[J]. Journal of the American Chemical Society,2008,130(15):5018-5019. [22] SU W Y,ZHANG Y F,LI Z H,et al.Multivalency iodine doped TiO2:preparation,characterization,theoretical studies and visible-light photocatalysis[J].Langmuir the ACS Journal of Surfaces & Colloids,2008,24(7):3422-3428. [23] LIU J M,ZHANG Q C,YANG J C,et al.Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis[J].Chemical Communications,2014,50(90):13971-13974. [24] PELAEZ M,ARMAH A,STATHATOS E,et al.Visible light-activated NF-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water[J].Catalysis Today,2009,144(1):19-25. [25] 石建稳,陈少华,王淑梅,等.纳米二氧化钛光催化剂共掺杂的协同效应[J].化工进展,2009,28(2):251-258. SHI J W,CHEN S H,WANG S M,et al.Synergy of codoped nanometer titania photocatalyst[J]. Chemical Industry and Engineering Progress,2009,28(2):251-258. [26] ZHENG Z K,HUANG B B,QIN X Y,et al.Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M=Au,Pt,Ag) and evaluation of their photocatalytic oxidation of benzene to phenol[J].Journal of Materials Chemistry,2011,21(25):9079-9087. [27] 樊国栋,王丽娜,管园园,等.Ag/TiO2纳米催化剂的制备及性能[J].化工进展,2016,35(3):820-825. FAN G D,WANG L N,GUAN Y Y,et al.Preparation and properties of Ag/TiO2 nanoparticle catalyst[J]. Chemical Industry and Engineering Progress,2016,35(3):820-825. [28] XIN B F,JING L Q,REN Z Y,et al.Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2[J].Journal of Physical Chemistry B,2005,109(7):2805-2809. [29] 谢先法,吴平霄,党志,等.过渡金属离子掺杂改性TiO2研究进展[J].化工进展,2005,24(12):1358-1362. XIE X F,WU P X,DANG Z,et al.Research progress of photocatalytic performance of TiO2 modified by doped transition metalions[J].Chemical Industry and Engineering Progress,2005,24(12):1358-1362. [30] CHOI J,PARK H,HOFFMANN M R.Effects of single metal-ion doping on the visible-light photoreactivity of TiO2[J].The Journal of Physical Chemistry C,2010,114(2):783-792. [31] CHEN C C,MA W H,ZHAO J C.Semiconductor-mediated photodegradation of pollutants under visible-light irradiation[J]. Chemical Society Reviews,2010,39(11):4206-4219. [32] CHATTERJEE D,MAHATA A.Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,153(1):199-204. [33] BAKER D R,KAMAT P V.Photosensitization of TiO2 nanostructures with CdS quantum dots:particulate versus tubular support architectures[J]. Advanced Functional Materials,2009,19(5):805-811. [34] ROBEL I,KUNO M,KAMAT P V.Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles[J].Journal of the American Chemical Society,2007,129(14):4136-4137. [35] BRAHIMI R,BESSEKHOUAD Y,BOUGUELIA A,et al.Visible light induced hydrogen evolution over the heterosystem Bi2S3/TiO2[J].Catalysis Today,2007,122(1):62-65. [36] LEGHARI S A K,SAJJAD S,CHEN F,et al.WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst[J]. Chemical Engineering Journal,2011,166(3):906-915. [37] 程刚,周孝德,李艳,等.纳米ZnO-TiO2复合半导体的La3+改性及其光催化活性[J].催化学报,2007,28(10):885-889. CHENG G,ZHOU X D,LI Y,et al.La3+ Modification of ZnO-TiO2 coupled semiconductors and their photocatalytic activity[J].Chinese Journal of Catalysis,2007,28(10):885-889. [38] ROBERT D. Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications[J]. Catalysis Today,2007,122(1):20-26. [39] YAO W F,ZHANG B,HUANG C P,et al.Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and Rhodamine B solutions[J].Journal of Materials Chemistry,2012,22(9):4050-4055. [40] NEVES M C,NOGUEIRA J M F,TRINDADE T,et al.Photosensitization of TiO2 by Ag2S and its catalytic activity on phenol photodegradation[J]. Journal of Photochemistry & Photobiology A:Chemistry,2009,204(2):168-173. [41] YU C L,LI G,KUMAR S,et al.Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants[J].Advanced Materials,2014,26(6):892-898. [42] ZHAO Z,ZHU L,FAN J.Ag@AgX(X=Cl,Br,I) modified N,F codoped TiO2 nanotubes as effective photocatalyst[J]. Materials Technology,2014,29(s2):A3-A8. [43] YU D D,BAI J,LIANG H O,et al.Electrospinning,solvothermal,and self-assembly synthesis of recyclable and renewable AgBr-TiO2/CNFs with excellent visible-light responsive photocatalysis[J]. Journal of Alloys and Compounds,2016,683:329-338. [44] YU D D,BAI J,LIANG H O,et al.AgI-modified TiO2 supported by PAN nanofibers:a heterostructured composite with enhanced visible-light catalytic activity in degrading MO[J]. Dyes and Pigments,2016,133:51-59. [45] LIANG H O,YU D D,BAI J,et al.Photocatalytic activity of carbon nanofibers loading AgBr-TiO2 composites under visible light irradiation[J]. Composite Interfaces,2015,22(7):663-671. [46] YU D D,BAI J,LIANG H O,et al.A new fabrication of AgX (X=Br,I)-TiO2 nanoparticles immobilized on polyacrylonitrile (PAN)nanofibers with high photocatalytic activity and renewable property[J].RSC Advances,2015,5(111):91457-91465. [47] LIANG H O,LI C P,BAI J,et al.Fabrication of visible-light-responsed calcium metasilicate-supported Ag-AgX/TiO2,(X=Cl,Br,I)composites and their photocatalytic properties[J]. Advanced Powder Technology,2015,26(3):1005-1012. [48] 傅敏,徐海燕,吴四维.镧掺杂TiO2/g-C3N4复合光催化剂的制备及其可见光催化活性研究[J].环境科学学报,2017,37(3):994-1002. FU M,XU H Y,WU S W.Preparation of lanthanum doping TiO2/g-C3N4 composite photocatalyst for enhanced visible light photocatalytic activity[J].Acta Scientiae Circumstantiae,2017,37(3):994-1002. [49] ZHANG W P,XIAO X Y,LI Y,et al.Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2/g-C3N4 photocatalyst and DFT study[J].Applied Surface Science,2016,389:496-506. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[9] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[10] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[11] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[12] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[13] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[14] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[15] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1385
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 359
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |