Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (S1): 1-9.DOI: 10.16085/j.issn.1000-6613.2016.s1.001
• Chemical processes and equipments • Previous Articles Next Articles
ZHOU Yunlong, SI Mengyin, ZUO Yuanhui, KANG Shifei, WANG Yangang, SHI Huancong, CUI Lifeng
Received:
2016-02-22
Revised:
2016-04-02
Online:
2016-07-08
Published:
2016-06-30
周云龙, 司梦银, 左元慧, 康诗飞, 王燕刚, 史焕聪, 崔立峰
通讯作者:
崔立峰,教授,研究方向为二氧化碳吸收和封存。E-mail lifeng.cui@gmail.com。
作者简介:
周云龙(1991-),男,硕士研究生,研究方向为二氧化碳吸收和封存。
基金资助:
CLC Number:
ZHOU Yunlong, SI Mengyin, ZUO Yuanhui, KANG Shifei, WANG Yangang, SHI Huancong, CUI Lifeng. Recent technological developments in post combustion CO2 capture amine scrubbing process in commercial plants[J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 1-9.
周云龙, 司梦银, 左元慧, 康诗飞, 王燕刚, 史焕聪, 崔立峰. 燃烧尾气后处理的反应溶剂型大型工业CO2吸收塔工艺技术进展[J]. 化工进展, 2016, 35(S1): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.s1.001
[1] Large demonstration post-combustion carbon capture and storage(PCCCS)[R/OL]. PCCCS, 2015. https://sequestration.mit.edu/tools/projects/indexpilotshtml. [2] IPCC Special Report on Carbon Dioxide Capture and Storage, A Special Report of Working Group III of the Intergovernmental Panel on Climate Change[R/OL].IPCC, 2005.http://www.ipcc.ch/pdf/special-reports/srccs/srccswholereport.pdf. [3] BARCHAS R, DAVIS R.The Kerr-McGee/ABB lummus crest technology for the recovery of CO2 from stack gases[J]. Energy Convers.Manage., 1992, 33:333-340. [4] SANDER M T, MARIZ C L.The fluor daniel® econamine FG process:past experience and present day focus[J]. Energy Convers.Manage., 1992, 33:341-348. [5] CHAPEL D, ERNEST J, MARIZ C.Recovery of CO2 from flue gases:commercial trends[C]//Proceeding of the Canadian Society of Chemical Engineers Annual Meeting, Saskatoon:Saskatchewan, Canada c1999. [6] MIMURA T, NOJO T, IIJIMA M, et al.Recent developments in flue gas CO2 recovery technology[C]//Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, Japan.//GALE J and KAYA Y.(Eds.), Elsevier Science Ltd, Oxford, UK.c2003. [7] MIMURA T, SATSUMI S, IIJIMA M, et al.Development on energy saving technology for flue gas carbon dioxide recovery by the chemical absorption method and steam system in power plant[M]//In:RIEMER B.(Ed.), Greenhouse Gas Control Technologies.Elsevier Science Ltd., United Kingdom, 1999:71-76. [8] MONEA M.Boundary Dam-The Future is Here[EB/OL].//GHGT-12 international conference, Austin, Texas, USA, October, 7th 2014.[2014-10-07].http://www.ghgt.info/docs/GHGT-12/Presentations/IEAGHGCONFERENCEnovideo.pdf/>. [9] CANSOLV 2014.Shell Cansolv's CO2 capture technology:achievement from first commercial plant[C]//Proceedings of GHGT-12, Austin:Texas, USA c2014. [10] VAN DER HAM L V, VAN ECKEVELD A C, GOETHEER E L V.Online monitoring of Dissolved CO2 and MEA concentrations:effect of solvent degradation on predictive accuracy[J].Energy Proc., 2014, 63:1223-1228. [11] POURYOUSEFI F.Development of on-line analytical technique for determination of composition of CO2-loaded formulated amine solvents based on the liquid thermos physical properties for a post-combustion CO2 capture process[D]. Regina:University of Regina, 2015. [12] POURYOUSEFI F, IDEM R.New analytical technique for carbon dioxide absorption solvents[J]. Ind. Eng. Chem. Res., 2008.47:1268-1276. [13] ELMOUDIR W, FAIRCHILD J, ABOUDHEIR A.HTC solvent reclaimer system at searles valley minerals facility in Trona, California[C]//Proceeding of the 12th International Conference on Greenhouse Gas Control Technologies (GHGT-12), Austin, Texas, USA.c2014. [14] Method 1:Sample and velocity traverses for stationary sources.US Environmental Protection Agency USA[S]. USEPA 2015. [15] Method 2:Determination of stack gas velocity and volumetric flow rate (type S pitot tube).US Environmental Protection Agency.USA[S].USEPA 2015. [16] Method 3:Gas Analysis for the determination of dry molecular weight.US Environmental Protection Agency. USA[S].USEPA 2015. [17] Method 4:Determination of moisture content in stack gases. US Environmental Protection Agency.USA[S]. USEPA 2015. [18] Method 5:Determination of particulate matter emissions from stationary sources.US Environmental Protection Agency. USA[S].USEPA 2015. [19] Method 6:Determination of sulfur dioxide emissions from stationary sources.US Environmental Protection Agency. USA[S].USEPA 2015. [20] Method 7:Determination of nitrogen oxide emissions from stationary sources.US Environmental Protection Agency. USA[S].USEPA 2015. [21] Method 8:Determination of sulfuric acid and sulfur dioxide emissions from stationary sources. US Environmental Protection Agency.USA[S].USEPA 2015. [22] Amino ethanol compounds II:method 3509., manual of analytical methods (NMAM), 4th ed[S].NIOSH 1994. [23] SINTEF Report:H&ETQP amine1 call-off 2:verify manual sampling procedures[R].SINTEF Materials and Chemicals. USA 2012. [24] FUJITA K, MURAOKA D, OGAWA T, et al.Evaluation of amine emissions from the post-combustion CO2 capture pilot plant[J].Energy Proc,2013, 37:727-734. [25] KHAKHARIA P, KVAMSDAL H M, DA SILVA E F, et al.Field study of a Brownian Demister unit to reduce aerosol based emission from a post combustion CO2 capture plant[J]. Int. J. Greenhouse Gas Control, 2014, 28:57-64. [26] KHAKHARIA P, MERTENS J, VLUGT T J H, et al.Predicting aerosol based emissions in a post combustion CO2 capture process using an aspen plus model[J].Energy Proc,2014, 63:911-925. [27] MERTENS J, KNUDSEN J, THIELENS M L, et al.On-line monitoring andcontrolling emissions in amine post combustion carbon capture:a field test[J]. Int. J. Greenhouse Gas Control, 2012, 6:2-11. [28] MERTENS J, LEPAUMIER H, DESAGHER D, et al. Understanding ethanolamine (MEA) and ammonia emissions from amine based postcombustion carbon capture:lessons learned from field tests[J].Int.J.Greenhouse Gas Control,2013, 13:72-77. [29] REY A, GOUEDARD C, LEDIRAC N, et al.Amine degradation in CO2 capture.2.New degradation products of MEA.Pyrazine andalkyl pyrazines:analysis, mechanism of formation and toxicity[J].Int.J.Greenhouse.Gas Control, 2013, 19:576-583. [30] VEVELSTAD S J, GRIMSTVDT A, EINBU A, et al. Oxidative degradation of amines using a closed batch system[J]. Int. J. Greenhouse Gas Control, 2013, 18:1-14. [31] VEVELSTAD S J, GRIMSTVDT A, ELNAN J, et al. Oxidative degradation of 2-ethanolamine:the effect of oxygen concentration and temperature on product formation[J]. Int. J. Greenhouse Gas Control,2013, 18:88-100. [32] VEVELSTAD S J, GRIMSTVEDT A, KNUUTILA H, et al.Influence of experimental setup on amine degradation[J]. Int. J. Greenhouse Gas Control, 2014, 28:156-167. [33] BOUGIE F, ILIUTA M C.Stability of aqueous amine solutions to thermal and oxidative degradation in the absence and the presence of CO2[J].Int.J.Greenhouse Gas Control,2014, 29:16-21. [34] NIELSEN P T, LI L, ROCHELLE G T.Piperazine degradation in pilot plants[J].Energy Proc.,2013, 37:1912-1923. [35] VAN ECKEVELD A C, VAN DER HAM L V, GEERS L F G, et al.Online monitoring of the solvent and absorbed acid gas concentration in a CO2 capture process using monoethanolamine[J].Ind.Eng.Chem.Res.,2014, 53:5515-5523. [36] EINBU A, CIFTJA A F, GRIMSTVEDT, A, et al.Online analysis of amine concentration and CO2 loading in MEA solutions by ATR-FTIR spectroscopy[J].Energy Proc.,2012, 23:55-63. [37] IDEM R, WILSON M, TONTIWACHWUTHIKUL P, et al.Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the Boundary Dam CO2 capture demonstration[J]. Ind. Eng. Chem.Res.,2006, 45:2414-2420. [38] ROCHELLE G T.Amine scrubbing for CO2 capture[J]. Science,2009, 325:1652-1654. [39] SAKWATTANAPONG R, AROONWILAS A, VEAWAB A.Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines[J]. Ind. Eng. Chem.Res.,2005, 44:4465-4473. [40] AROONWILAS A, VEAWAB A.Integration of CO2 capture unit using single- and blended-amines into supercritical coal-fired power plants:implications for emission and energy management[J].Int.J.Greenhouse Gas Control, 2007, 1:143-150. [41] ZHANG J, QIAO Y, AGAR D W.Intensification of low temperature thermomorphic biphasic amine solvent regeneration for CO2 capture[J].Chem.Eng.Res.Des., 2012, 90:743-749. [42] FERON P H M.Exploring the potential for improvement of the energy performance of coal fired power plants with post-combustion capture of carbon dioxide[J].Int.J.Greenhouse Gas Control, 2010, 4:152-160. [43] KHALIPOUR R, ABBAS A.HEN optimization for efficient retrofitting of coal-fired power plants with post-combustion carbon capture[J].Int.J.Greenhouse Gas Control, 2011, 5:189-199. [44] GAO H, ZHOU L, LIANG Z, et al.Comparative studies of heat duty and total equivalent work of a new heat pump distillation with split flow process, conventional split flow process, and conventional baseline process for CO2 capture using monoethanolamine[J].Int.J.Greenhouse Gas Control, 2014, 24:87-97. [45] GELOWITZ D, IDEM R, TONTIWACHWUTHIKUL P. Method and absorbent composition for recovering a gaseous component from a gas stream:US2010/8388737B2[P]. 2010-09-16. [46] IDEM R, SHI H, GELOWITZ D, et al.Catalytic method and apparatus for separating a gas component from an incoming gas stream:US2013/108532A1[P].2013-05-02. [47] SHI, H C, NAAMI A, IDEM R, et al.Catalytic and noncatalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents[J]. Int. J. Greenhouse. Gas Control, 2014, 26:39-50. [48] CHU S.Carbon capture and sequestration[J].Science, 2009, 325:1599-1602. [49] TRIPP B C, SMITH K, FERRY J G.Carbonic anhydrase:new insights for an ancient enzyme[J].Journal of Biological Chemistry, 2001, 276:48615-48618. [50] TASHIAN R E.The carbonic anhydrases:widening perspectives on their evolution, expression and function[J].Bioessays, 1989, 10:186-192. [51] SAVILE C K, LALONDE J J.Biotechnology for the acceleration of carbon dioxide capture and sequestration[J]. Curr. Opin. Biotechnol, 2011, 22:818-823. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[3] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
[4] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[5] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[6] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[7] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
[8] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[9] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[10] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[11] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[12] | YANG Zhuang, LI Runhua, QIANG Zengshou, WANG Yajun, YAO Wenqing. Photocatalytic degradation of waste refrigerant R134a [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2109-2114. |
[13] | SANG Wei, TANG Jianfeng, HUA Yihuai, CHEN Jie, SUN Peiyuan, XU Yifei. Effects of physical solvent and amine properties on the performance of biphasic solvent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2151-2159. |
[14] | ZHOU Hao, ZHANG Heng, WEN Nini, WANG Xurui, XU Lu, LI Wei, SU Yaxin. Preparation and de-NO x performance of C3H6-SCR over Cu-SAPO-44 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1373-1382. |
[15] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |