Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (08): 2798-2808.DOI: 10.16085/j.issn.1000-6613.2016-2350
Previous Articles Next Articles
CHEN Hongxia1,2, HUANG Linbin1, GONG Yifei1
Received:
2016-12-19
Revised:
2017-01-28
Online:
2017-08-05
Published:
2017-08-05
陈宏霞1,2, 黄林滨1, 宫逸飞1
通讯作者:
陈宏霞(1980-),女,博士,副教授,研究方向为强化传热与节能及新型复杂材料的应用。
作者简介:
陈宏霞(1980-),女,博士,副教授,研究方向为强化传热与节能及新型复杂材料的应用。E-mail:hxchen@ncepu.edu.cn。
基金资助:
CLC Number:
CHEN Hongxia, HUANG Linbin, GONG Yifei. Progress on boiling heat transfer from porous structure and surface wettability[J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2798-2808.
陈宏霞, 黄林滨, 宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(08): 2798-2808.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016-2350
[1] LU Y W,KANDLIKAR S G.Nanoscale surface modification techniques for pool boiling enhancement——a critical review and future directions[J].Heat Transfer Engineering,2011,32(10):827-842. [2] DONG L,QUAN X,CHENG P.An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J].International Journal of Heat and Mass Transfer,2014,71(4):189-196. [3] LIE Y M,KE J H,CHANG W R,et al.Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip[J].International Journal of Heat and Mass Transfer,2007,50(19-20):3862-3876. [4] HUTTER C,KENNING D B R,SEFIANE K,et al.Experimental pool boiling investigations of FC-72 on silicon with artificial cavities and integrated temperature microsensors[J].Experimental Thermal and Fluid Science,2010,34(4):422-433. [5] YU C K,LU D C,CHENG T C.Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72[J].Journal of Micromechanics and Microengineering,2006,16(10):2092-2099. [6] VEMURI S,KIM K J.Pool boiling of saturated FC-72 on nano-porous surface[J].International Communications in Heat and Mass Transfer,2005,32(1-2):27-31. [7] KIM S H,LEE G C,KANG J Y,et al.Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface[J].International Journal of Heat and Mass Transfer,2015,91:1140-1147. [8] KIM J,JUN S,LAKSNARAIN R,et al.Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability[J].International Journal of Heat and Mass Transfer,2016,101:992-1002. [9] ROHSENOW W M.A method of correlating heat transfer data for surface boiling liquids[J].Transfer ASME Journal of Heat Transfer,1951,74:969-976. [10] JUN S,KIM J,YOU S,et al.Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water[J].International Journal of Heat and Mass Transfer,2016,103:277-284. [11] JUN,S,WI H,GURUNG A,et al.Pool boiling heat transfer enhancement of water using brazed copper microporous coatings[J].Journal of Heat Transfer,2016,138(7):071505-071502-9. [12] ?I?MAN Y,SADAGHIANI A K,KHEDIR K R,et al. Nucleate boiling heat transfer enhancement using nanostructured Al-alloy plates[C]//ASME 2016,International Conference on Micro/nanoscale Heat and MASS Transfer,2016. [13] LABUNTZOV D A.Heat exchange at boiling of liquids[J].Thermal Energy Engineering,1959(12):19-26. [14] CLARK H B,STRENGE P S,WESTWATER J W.Active sites for nucleate boiling[J].Chemical Engineering Progress Symposium,1959,56(29):103-110. [15] SHOJI M,TAKAGI Y.Bubbling features from a single artificial cavity[J].International Journal of Heat and Mass Transfer,2001,44:2763-2776. [16] HSU Y Y.On the size range of active nucleation cavities on a heating surface[J].Journal of Heat Transfer,1962,84(3):207. [17] HONDA H,TAKAMASTU H,WEI J J.Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron:scale roughness[J].Transactions of the ASME Journal of Heat Transfer,2002,124(2):383-390. [18] WANG Y Q,DONG C M,SHU S L.Enhanced pool boiling heat transfer on mono and multi-layer micro-nano bi-porous copper surfaces[C]//ASME 20165th International Conference on Micro/Nanoscale Heat and Mass Transfer,Biopolis,Singapore,2016. [19] PARKER J L,EI-GENK M S.Enhanced saturation and subcooled boiling of FC-72 dielectric liquid[J].International Journal of Heat and Mass Transfer,2005,48(18):3736-3752. [20] MAHALE J P,GARIMELLA S V.Nucleate boiling from smooth and rough surfaces-Part 1:fabrication and characterization of an optically transparent heater-sensor substrate with controlled surface roughness[J].Experimental Thermal and Fluid Science,2013,44(1):456-467. [21] CHAN B,CHOI S,KIM S J.Critical heat flux of bi-porous sintered copper coatings in FC-72[J].International Journal of Heat and Mass Transfer,2013,65(7):655-661. [22] 郭兆阳,徐鹏,王元华,等.烧结型多孔表面管外池沸腾传热特性[J].化工学报,2012,63(12):3798-3804. GUO Z Y,XU P,WANG Y H,et al.Pool boiling heat transfer on sintered porous coating tubes[J].CIESC Journal,2012,63(12):3798-3804. [23] KIM J H,GURUNG A,AMAYA M,et al.Microporous coatings to maximize pool boiling heat transfer of saturated R-123 and water[J].Journal of Heat Transfer,2015,137(8):081501-7. [24] GHEITAGHY A M,SAFFARI H,GHASIMI D,et al.Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement[J].Applied Thermal Engineering,2017,113:1097-1106. [25] DAS S,SAHA B,BHAUMIK S.Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure[J].Experimental Thermal and Fluid Science,2017,81:454-465. [26] HUTTER C,SEFIANE K,KARAYIANNIS T G,et al.Nucleation site interaction between artificial cavities during nucleate pool boiling on silicon with integrated micro-heater and temperature micro-sensors[J].International Journal of Heat and Mass Transfer,2012,55(s 11-12):2769-2778. [27] ZHANG L,SHOJI M.Nucleation site interaction in pool boiling on the artificial surface[J].International Journal of Heat and Mass Transfer,2003,46(3):513-522. [28] NIMKAR N D,BHAVNANI S H,JAEGER R C.Effect of nucleation site spacing on the pool boiling characteristics of a structured surface[J].International Journal of Heat and Mass Transfer,2006,49(17-18):2829-2839. [29] JIANG Y Y,OSADA H,INAGAKI M,et al.Wall thermal conductivity effects on nucleation site interaction during boiling:an experimental study[C]//International Heat Transfer Conference. 2010:135-160. [30] TAKATA Y,HIDAKA S,CAO J M,et al.Effect of surface wettability on boiling and evaporation[J].Energy,2005,30(2-4):209-220. [31] HAI T P,CANEY N,MARTY P,et al.Surface wettability control by nanocoating:the effects on pool boiling heat transfer and nucleation mechanism[J].International Journal of Heat and Mass Transfer,2009,52(23-24):5459-5471. [32] JO S J,AN S,PARK H G,et al.Enhancement of critical heat flux and superheat through controlled wettability of cuprous-oxide fractal-like nanotextured surfaces in pool boiling[J].International Journal of Heat & Mass Transfer,2017,107:105-111. [33] QI R,HU Y,WANG Y,et al.A new approach to enhance the heat and mass transfer of liquid desiccant dehumidification with a titanium dioxide superhydrophilic self-cleaning coating[J].Journal of Cleaner Production,2016,112:3555-3561. [34] 陈宏霞,马福民,黄林滨.金属丝网超亲/疏水性强化气液相界面运动[J].化工学报,2016,67(6):2318-2324. CHEN H X,MA F M,HUANG L B.Super-wettability meshes enhance movement of gas-liquid interface[J]. CIESC Journal,2016,67(6):2318-2324. [35] ZHANG B J,KIM K J.Nucleate pool boiling heat transfer augmentation on hydrophobic self-assembly mono-layered alumina nano-porous surfaces[J]. International Journal of Heat and Mass Transfer,2014,73(9):551-561. [36] 徐鹏飞,李强,宣益民.超亲水多孔表面制备及其池沸腾换热研究[J].工程热物理学报,2014(8):1606-1609. XU P F,LI Q,XUAN Y M.Preparation and pool boiling heat transfer test of super-hydrophilic surface[J]. Journal of Engineering Thermophysics,2014(8):1606-1609. [37] 郑晓欢,纪献兵,王野,等.超亲/疏水性表面池沸腾传热研究[J].化工进展,2016,35(12):3793-3798. ZHENG X H,JI X B,WANG Y,et al.Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[J].Chemical Industry and Engineering Progress,2016,35(12):3793-3798. [38] LU M C,HUANG C H,HUANG C T,et al.A modified hydrodynamic model for pool boiling CHF considering the effects of heater size and nucleation site density[J].International Journal of Thermal Sciences,2015,91(5):133-141. [39] JO H J,AHN H S,KANG S H,et al.A study of nucleate boiling heat transfer on hydrophilic,hydrophobic and heterogeneous wetting surfaces[J].International Journal of Heat and Mass Transfer,2011,54(25-26):5643-5652. [40] O'HANLEY H,COYLE C,BUONGIORNO J,et al.Separate effects of surface roughness,wettability,and porosity on the boiling critical heat flux[J].Applied Physics Letter,2013,103(2):024102-5. [41] COYLE C,O'HARRY H,PHILLIPS B,et al.Effects of hydrophobic surface patterning on boiling heat transfer and critical heat flux of water at atmospheric pressure[C]//ASME 2013 Power Conference,2013:V002T11A005. [42] BETZ A R,JENKINS J,KIM C J,et al.Boiling heat transfer on superhydrophilic,superhydrophobic,and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer,2013,57(2):733-741. [43] ZUPAN?I? M,STEINBÜCHER M,GREGOR?I? P,et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces[J]. Applied Thermal Engineering,2015,91:288-297. [44] JO H J,PARK H S,KIM M H.Single bubble dynamics on hydrophobic-hydrophilic mixed surfaces[J].International Journal of Heat and Mass Transfer,2016,93:554-565. [45] LEE J S,LEE J S.Critical heat flux enhancement of pool boiling with adaptive fraction control of patterned wettability[J].International Journal of Heat and Mass Transfer,2016,96:504-512. [46] ZHANG B J,KIM K J.Nucleate pool boiling heat transfer augmentation on hydrophobic self-assembly mono-layered alumina nano-porous surfaces[J].International Journal of Heat and Mass Transfer,2014,73:551-561. [47] TETREAULT-FRIEND M,AZIZIAN R,BUCCI M,et al.Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers[J].Applied Physics Letters,2016,108(24):243102. [48] FORSTER H K,GREIF R.Heat transfer to a boiling liquid-mechanism and correlations[J].Journal of Heat Transfer,1959. [49] HAN C Y,GRIFFITH P.The mechanism of heat transfer in nucleate pool boiling——Part Ⅰ:bubble initiaton,growth and departure[J].International Journal of Heat and Mass Transfer,1965,8(6):887-904. [50] BANKOFF S G.COLAHAN W J.BARTZ D R.Summary of conference on bubble dynamics and boiling heat transfer held at the jet propulsion laboratory JPL memory[R].US:California Inst. of Tech.,Pasadena. Tet Propulsion Lab,1956. [51] KURUL N,PODOWSKI M Z.Multidimensional effects in forced convection subcooled boiling[C]//Proceedings of the 9th International Heat Transfer Conference,Jeruselem,Israel,1990. [52] 刁彦华,赵耀华,王秋良.R113池沸腾气泡行为的可视化及传热机理[J].化工学报,2005,56(2):227-234. DIAO Y H,ZHAO Y H,WANG Q L.Bubble dynamics and heat transfer mechanism of pool boiling of R113[J].CIESC Journal,2005,56(2):227-234. [53] 刁彦华,赵耀华,王秋良.制冷工质R11池沸腾换热气泡行为的可视化研究[J].自然科学进展,2006,16(4):449-456. DIAO Y H,ZHAO Y H,WANG Q L.Bubble dynamics and heat transfer mechanism of pool boiling of R11[J].Progress in Natural Science,2006,16(4):449-456. [54] XUE M,PENG N,LI C,et al.Enhanced superhydrophilicity and thermal stability of ITO surface with patterned ceria coatings[J]. Applied Surface Science,2015,329:11-16. [55] GERARDI C,BUONGIORNO J,HU L,et al.Study of bubble growth in water pool boiling through synchronized,infrared thermometry and high-speed video[J].International Journal of Heat and Mass Transfer,2010,53(19):4185-4192. [56] THIAGARAJAN S J,YANG R,KING C,et al.Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces[J].International Journal of Heat and Mass Transfer,2015,89:1297-1315. [57] GONG S,CHENG P.Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer[J]. International Journal of Heat and Mass Transfer,2015,85:635-646. [58] KANDLIKAR S G.A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation[J].Journal of Heat Transfer,2001,123(6):1071-1079. [59] ZUBER N.Hydrodynamic aspects of boiling heat transfer[M].Los Angeles,CA:California University,1959:156. [60] CHU K H,ENRIGHT R,WANG E N.Microstructured surfaces for enhanced pool boiling heat transfer[J].Applied Physics Letter,2012,100(24):214603-214603-4. [61] AHN H S,CHAN L,KIM H,et al.Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface[J].Nuclear Engineering and Design,2010,240(10):3350-3360. [62] AHN H S,CHAN L,KIM J,et al.The effect of capillary wicking action of micro/nano structures on pool boiling critical heat flux[J].International Journal of Heat and Mass Transfer,2012,55(s 1/2/3):89-92. [63] QUAN X,DONG L,CHENG P.A CHF model for saturated pool boiling on a heated surface with micro/nano-scale structures[J]. International Journal of Heat and Mass Transfer,2014,76(6):452-458. [64] 王伟,全晓军,郑平.池沸腾临界热流密度及临界波长的实验研究[J].热科学与技术,2014,13(2):0135-0136. WANG W,QUAN X J,CHENG P.Experimental study on critical heat flux and critical wavelength of pool boiling[J].Journal of Thermal Science and Technology,2014,13(2):0135-0136. [65] WEI J J,HONDA H.Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72[J]. International Journal of Heat and Mass Transfer,2003,46(21):4059-4070. [66] LU M C,CHEN R,SRINIVASAN V,et al.Critical heat flux of pool boiling on Si nanowire array-coated surfaces[J].International Journal of Heat and Mass Transfer,2011,54(25):5359-5367. [67] SANG M K,AMAYA M,KUMAR R,et al.Effects of pressure,orientation,and heater size on pool boiling of water with nanocoated heaters[J].International Journal of Heat and Mass Transfer,2010,53(23-24):5199-5208. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[3] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[4] | ZHANG Zhe, LANG Yuanlu, CHEN Jia’nan, WU Qiaoyan, JI Hongwei, LI Xingbo, MA Yan, TAO Liuqian, WANG Jinyue. Analysis of effect of solid surface temperature on phase transition process and surface wetting characteristics of frozen droplets [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4605-4617. |
[5] | LIU Shijie, MO Xun, TU Aimin, ZHU Dongsheng, TAN Lianyuan. Shell-side heat transfer enhancement of a novel longitudinal flow oil cooler [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3475-3482. |
[6] | SUN Nana, SUN Huina, SHEN Lisha, SU Ruiyu, ZHAO Chao. Synergistic demulsification of magnetic nanoparticle-microwave on heavy oil O/W emulsion [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3127-3137. |
[7] | LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. |
[8] | XIONG Lu, SHI Lei, WANG Wenyu, JIN Xin, NIU Jiarong, ZHU Zhengtao, LIN Tong. Progress in unidirectional water/oil transport porous materials based on design of wettability gradient [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2526-2536. |
[9] | ZHANG Shizhong, CHEN Zhanxiu, LIU Fengrui, PANG Runyu, WANG Qing. Molecular dynamics simulation of liquid boiling on nanostructured surfaces [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2311-2321. |
[10] | LI Yongtong, LIU Jian, YANG Laishun. Thermo-hydraulic performance analysis of novel metal foam and pin fin hybrid heat sink [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2268-2276. |
[11] | YANG Honghai, ZHANG Miao, LIU Liwei, ZHOU Yi, SHEN Junjie, SHI Weigang, YIN Yong. Heat transfer performance enhancement and prediction in GO/water pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1725-1734. |
[12] | SHAN Linna, YANG Zhensheng, YAN Guofei, LI Chunli, LI Hao, WANG Zhiying. Asymmetric Janus membranes based on hydrophilic modification of dopamine for efficient oil/water separation [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6500-6510. |
[13] | LIN Qingyu, WANG Zhu, FENG Zhenfei, LING Biao, CHEN Zhen. Review progress on twisted tape structure for heat transfer and entropy generation in tube [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721. |
[14] | LIN Weixiang, SU Gangchuan, CHEN Qiang, WEN Jian, AKRAPHON Janon, WANG Simin. Influencing factors of ultrasound enhanced heat transfer of immersed coil heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 40-51. |
[15] | WANG Shuai, ZHAO Jinzhu, WANG Rongyuan, CUI Kaixiang, JING Jiaqiang. New ideas of heavy oil flow drag reduction by emulsification and wetting coupling action [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 126-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |