[1] Soyama H,Takakuwa O. Enhancing the aggressive strength of a cavitating jet and its practical application[J]. Journal of Fluid Science and Technology,2011,6(4):510-521. [2] Axinte D A,Karpuschewski B,Kong M C,et al. High energy fluid jet machining (HEFJet-Mach):From scientific and technological advances to niche industrial applications[J]. CIRP Annals- Manufacturing Technology,2014,63:751-771. [3] Liu Xiumei,Long Zheng,He Jie,et al. Temperature effect on the impact of a liquid-jet against a rigid boundary[J]. Optik,2013,124:1542-1546. [4] 尹久红. 低压空化射流冲洗技术研究[D]. 成都:西南交通大学,2013. [5] Jean-Pierre F,Michel R,Ayat K,et al. Material and velocity effects on cavitation erosion pitting[J]. Wear,2012,274–275:248-259. [6] Peng G Y,Shimizu Seiji. Progress in numerical simulation of cavitating water jets[J]. Journal of Hydrodynamics,2013,25(4):502-509. [7] Reichardt H,Munzner H. Rotationally symmetric source-sink bodies with predominantly constant pressure distribution[J]. Arm. Res. Est. Trans.,1975,1:1-7. [8] Celik Arlkan Y,et al. Prediction of cavitation on two- and three-dimensional hydrofoils by an iterative BEM[C]//Proceedings of the 8th International Symposium on Cavitation,2012:696-702. [9] Fahri Celik,Yasemin A O,Sakir Bal. Numerical simulation of flow around two- and three-dimensional partially cavitating hydrofoils[J]. Ocean Engineering,2014,78:22-34. [10] Bal S. Prediction of wave pattern and wave resistance of surface piercing bodies by a boundary element method[J]. Numerical Methods in Fluids,2008,56 (3):305-329. [11] Bal S. The effect of finite depth on 2-D and 3-D cavitating hydrofoils[J]. Journal of Marine Science and Technology,2011,16 (2):129-142. [12] Akira Sou,Barís Bicer,Akio Tomiyama. Numerical simulation of incipient cavitation flow in a nozzle of fuel injector[J]. Computers & Fluids,2014,103:42-48. [13] Battistoni M,Grimaldi C N. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels[J]. Applied Energy,2012,97:656-666. [14] Vijayakumar T,Thundil K R R,Nanthagopal K. Effect of the injection pressure on the internal flow characteristics for diethyl and dimethyl ether and diesel fuel injectors[J]. Thermal Science,2011,15(4):1123-1130. [15] 王国玉,方韬,曹树良,等. 非定常黏性空化流动模型及其数值计算[J]. 工程热物理学报,2004,25:783-789. [16] Tseng Chien-Chou,Wang Li-Jie. Investigations of empirical coefficients of cavitation and turbulence model through steady and unsteady turbulent cavitating flows[J]. Computers & Fluids,2014,103:262-274. [17] Singhal A K,Athavale M M,Li H Y,et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluid Engineering,2002,124:617-624. [18] Saito Y,Nakamori I,Ikohagi T. Numerical analysis of unsteady vaporous cavitating flow around hydrofoil[C]//Fifth International Symposium on Cavitation,Osaka,Japan,2003. [19] Owis F M,Nayfeh A H. Computation of the compressible multiphase flow over the cavitating high-speed torpedo[J]. Journal of Fluid Engineering,2003,125(5):459-468. [20] Morgut M,Nobile E,Biluš I. Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil[J]. International Journal of Multiphase Flow,2011,37(6):620-626. [21] Karim M M,Ahmmed M S. Numerical study of periodic cavitating flow around NACA0012 hydrofoil[J]. Ocean Engineering,2012,55(1):81-87. [22] Vallier A,Nilsson H,Revstedt J. Mass transfer cavitation model with variable density of nuclei[C]//7th International Conference on Multiphase Flow,Tampa,USA,2010. [23] Federico Brusiani,Stefania Falfari,Piero Pelloni. Influence of the diesel injector hole geometry on the flow conditions emerging from the nozzle[J]. Energy Procedia,2014,45:749-758. [24] Molina S,Salvador F J,Carreres M,et al. A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles[J]. Energy Conversion and Management,2014,79:114-127. [25] 钱忠东,黄社华. 四种湍流模型对空化流动模拟的比较[J]. 水科学进展,2006,17(2):203-208. [26] 卢义玉,王晓川,康勇,等. 缩放型喷嘴产生的空化射流流场数值模拟[J]. 中国石油大学学报:自然科学版,2009,3(6):57-60. [27] 刘思孝. 低压自激脉冲空化射流喷嘴内部流场的研究[D]. 济南:山东大学,2013. [28] Asen P O,Kreiss G,Rempfer D. Direct numerical simulations of localized disturbances in pipe Poiseuille flow[J]. Computers & Fluids,2010,39(6):926-935. [29] Martinez L,Benkenida A,Cuenot B. A model for the injection boundary conditions in the context of 3D simulation of diesel spray:Methodology and validation[J]. Fuel,2010,89:219-228. [30] Chesnel J,Reveillon J,Menard T,et al. Large eddy simulation of liquid jet atomization[J]. Atomization Sprays,2012,21,711-736. [31] Navarro-Martinez S. Large eddy simulation of spray atomization with a probability density function method[J]. International Journal of Multiphase Flow,2014,63:11-22. [32] Jiang X,Siamas G A,Jagus K,et al. Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays[J]. Progress in Energy and Combustion Science,2010,36:131-167. [33] Chen Haosheng,Li Jiang,Chen Darong,et al. Damages on steel surface at the incubation stage of the vibration cavitation erosion in water[J]. Wear,2008,265:692-698. [34] 张晓东. 泄洪洞高速水流三维数值模拟[D]. 南京:中国水利水电科学研究院水力学所,2004. [35] Li Songjing,Aung Nay Zar,Zhang Shengzhuo,et al. Experimental and numerical investigation of cavitation phenomenon in flapper–nozzle pilot stage of an electrohydraulic servo-valve[J]. Computers & Fluids,2013,88:590-598. [36] Postrioti Lucio,Malaguti Simone,Bo Si Maurizio,et al. Experimental and numerical characterization of a direct solenoid actuation injector for diesel engine applications[J]. Fuel,2014,118:316-328. [37] Man Z A,Yang W,Yao X. Numerical simulation of underwater contact explosion[J]. Applied Ocean Research,2012,34:10-20. [38] Miller S T,Jasak H,Boger D A,et al. A pressure-based,compressible,two-phase flow finite volume method for underwater explosions[J]. Computers & Fluids,2013,87:132-143. [39] Wu Z D,Sun L,Zong Z. Computational investigation of the mitigation of an underwater explosion[J]. Acta Mechanica,2013,224(12):3159-3175. [40] Xie W F,Liu T G,Khoo B C. The simulation of cavitating flows induced by underwater shock and free surface interaction[J]. Applied Numerical Mathematics,2007,57(5):734-745. [41] Wang Gaohui,Zhang Sherong,Yu Mao,et al. Investigation of the shock wave propagation characteristics and cavitation effects of underwater explosion near boundaries[J]. Applied Ocean Research,2014,46:40-53. [42] Kunz R F,Boger D A,Stinebring D R,et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers and Fluids,2000,29(8):849-875. [43] Lauer E,Hu X Y,Hickel S,et al. Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics[J]. Computer & Fluids,2012,69:1-19. [44] Sang J A,Oh J K. Numerical investigation of cavitating flows for marine propulsors using an unstructured mesh technique[J]. International Journal of Heat and Fluid Flow,2013,43:259-267. [45] Wang Yue,Qiu Lu,Reitz Rolf D,et al. Simulating cavitating liquid jets using a compressible and equilibrium two-phase flow solver[J]. International Journal of Multiphase Flow,2014,63:52-67. [46] Echouchene F,Belmabrouk H,Le Penven L,et al. Numerical simulation of wall roughness effects in cavitating flow[J]. International Journal of Heat and Fluid Flow,2011,32:1068-1075. [47] 邓松圣,沈银华,李赵杰,等. 空化射流喷嘴流场的数值模拟[J]. 后勤工程学院学报,2008,24(2):42-46. [48] He Zhixia,Zhong Wenjun,Wang Qian,et al. Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle[J]. International Journal of Thermal Sciences,2013,70:132-143. [49] Salvador F J,Martínez-López J,Romero J V,et al. Influence of biofuels on the internal flow in diesel injector nozzles[J]. Mathematical and Computer Modeling,2011,54:1699-1705. [50] Wang Xiang,Su Wanhua. Numerical investigation on relationship between injection pressure fluctuations and unsteady cavitation processes inside high-pressure diesel nozzle holes[J]. Fuel,2010,89:2252-2259. [51] Mohammad T S T,Soran P,Morteza G. Numerical study on the effect of the cavitation phenomenon on the characteristics of fuel spray[J]. Mathematical and Computer Modeling,2012,56:105-117. [52] Takakuwa O,Soyama H. The effect of scanning pitch of nozzle for a cavitating jet during overlapping peening treatment[J]. Surface and Coatings Technology,2012,206:4756-4762. [53] Soyama H. Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet[J]. Wear,2013,297:895-902. [54] Tzanakis I,Eskin D G,Georgoulas A,et al. Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble[J]. Ultrasonics Sonochemistry,2014,21:866-878. [55] Dabiri S,Sirignano W A,Joseph D D. Interaction between a cavitation bubble and shear flow[J]. Journal of Fluid Mechanics,2010,651:93-116. [56] Hsu Ching-Yu,Liang Cho-Chung,Teng Tso-Liang,et al. A numerical study on high-speed water jet impact[J]. Ocean Engineering,2013,72:98-106. [57] Guha Anirban,Barron Ronald M,Balachandar Ram. An experimental and numerical study of water jet cleaning process[J]. Journal of Materials Processing Technology,2011,211:610-618. |