[1] Choi S U S. Enhancement thermal conductivity of fluids with nanoparticles[C]//Developments and Applications of Non-Newtonian Flows,New York:ASME Publication,1995:99-105. [2] 洪欢喜,武卫东,盛伟,等. 纳米流体制备的研究进展[J]. 化工进展,2008,27(12):1923-1928. [3] Zoubida Haddad,Chérifa Abid,Hakan F Oztop,et al. A review on how the researchers prepare their nanofluids[J]. International Journal of Thermal Sciences,2014,76:168-189. [4] Ghadimi A,Saidur R,Metselaar H S C. A review of nanofluid stability properties and characterization in stationary conditions[J]. International Journal of Heat and Mass Transfer,2011,54(17-18):4051-4068. [5] Shoghl S N,Bahrami M. Experimental investigation on pool boiling heat transfer of ZnO,and CuO water-based nanofluids and effect of surfactant on heat transfer coefficient[J]. International Communications in Heat and Mass Transfer,2013,45:122-129. [6] 张俊,李苏巧,彭林明,等. 纳米流体强化气液传质研究进展[J]. 化工进展,2013,32(4):732-739. [7] 宣益民,李强. 纳米流体能量传递理论与应用[M]. 北京:科学出版社,2009:24-27. [8] 彭小飞,俞小莉,夏立峰,等. 纳米流体悬浮稳定性影响因素[J]. 浙江大学学报:工学版,2007,41(4):577-580. [9] Majid Emami Meibodi,Mohsen Vafaie-Sefti,Ali Morad Rashidi,et al. The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids[J]. International Communications in Heat and Mass Transfer,2010(37):319-323. [10] 李金平,吴疆,梁德青,等. 纳米粒子悬浮液中分散剂选择的实验研究[J]. 兰州理工大学学报,2006,32(3):63-66. [11] 李兴,陈颖,莫松平,等. 表面活性剂对水基纳米流体固液相变特性的影响[J]. 化工学报,2013,49(6):3324-3330. [12] 郝素菊,张玉柱,蒋武锋,等. 含碳纳米管悬浮液的稳定性[J]. 东北大学学报:自然科学版,2007,28(10):1438-1441. [13] Zhu D S,Li X F,Wang N,et al. Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids[J]. Current Applied Physics,2009,9(1):131-139. [14] 林海斌,张国贤,黄林林,等. 纳米流体的分散性研究及其热物性测量[J]. 材料导报:研究篇,2010,24(6):29-32. [15] 程波,杜恺,张小松,等. 氨水-纳米炭黑纳米流体的稳定性[J]. 化工学报,2008,59(s2):49-52. [16] Yang Liu,Du Kai,Niu Xiaofeng,et al. An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids[J]. International Journal of Refrigeration,2011,34(8):1741-1748. [17] 宋晓岚,邱冠周,史训达,等. 混合表面活性剂分散纳米CeO2颗粒的协同效应[J]. 湖南大学学报:自然科学版,2005,32(5):95-99. [18] 王赛,石西昌. 表面活性剂对纳米氧化锌粒径和形貌的影响研究[J]. 化工新型材料,2007,35(8):43-47. [19] 莫松平,陈颖,李兴,等. 表面活性剂对二氧化钛纳米流体分散性的影响[J]. 材料导报B:研究篇,2013,27(6):43-46. [20] 包楚才,李超,皮振邦. 表面活性剂对CdSSe-H2O纳米流体稳定性影响[J]. 化学工程与装备,2012,7:32-36. [21] 孙玉利,左敦稳,王宏宇,等. 表面活性剂对纳米CeO2在水介质中分散性能的影响[J]. 南京航空航天大学学报,2011,43(1):71-74. [22] 陈金媛,李娜,方金凤. 表面活性剂对纳米TiO2在水中分散与沉降性能的影响[J]. 浙江工业大学学报,2012,40(6):595-598. [23] 林本兰,崔升,沈晓东. 分散剂对纳米四氧化三铁磁流体稳定性的影响[J]. 无机盐工业,2011,43(8):25-28. [24] 王良虎,向军,李菊香. 纳米流体的稳定性研究[J]. 材料导报,2011,25(17):17-20. [25] 李强. 纳米流体强化换热机理研究[D]. 南京:南京理工大学,2004. [26] Yang Liu,Du Kai. A thermal conductivity model for low concentrated nanofluids containing surfactants under various dispersion types[J]. International Journal of Refrigeration,2012,35(7):1978-1988. [27] Dang Liem X,Annapureddy Harsha V R,Sun Xiuquan,et al. Understanding nanofluid stability through molecular simulation[J]. Chemical Physics Letters,2012,551:115-120. [28] Maxwell J C. Electricity and Magnetism,PartⅡ[M]. 3rd ed. London:Clarendon Press,1904. [29] Hamilton R L,Crosser O K. Thermal conductivity of heterogeneous two component systems[J]. Ind. Eng. Chem. Fundam.,1962,1(3):182-191. [30] Yu W,Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids:A renovated Maxwell model[J]. J. Nanoparticle Res.,2003,5:167-171. [31] Bhattacharya P,Saha S K,Yadav A,et al. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids[J]. J. Appl. Phys.,2004,95(11):6492-6494. [32] Xue Q Z. Model for thermal conductivity of carbon nanotube based composites[J]. Physica B:Condens. Matter,2005,368(1-4):302-307. [33] Leong K C,Yang C,Murshed S M S. A model for the thermal conductivity of nanofluids:The effect of interfacial layer[J]. J. Nanoparticle Res.,2006,8:245-254. [34] Murshed S M S,Leong K C,Yang C. Investigations of thermal conductivity and viscosity of nanofluids[J]. Int. J. Therm. Sci.,2008,47:560-568. [35] Li X f,Zhu D S,Wang X J,et al. Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids[J]. Thermochimica acta,2008,469(1-2):98-103. [36] Zhou Mingzheng,Xia Guodong,Li Jian,et al. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions[J]. Experimental Thermal and Fluid Science,2012,36:22–29. [37] Wusiman Kuerbanjiang,Jeong Hyomin,Tulugan Keilmu,et al. Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS[J]. International Communications in Heat and Mass Transfer,2013,41:28-33. [38] 杨采影. 水基纳米流体分散稳定性及其对导热能力的影响[D]. 广州:广东工业大学,2011. [39] Einstein A. Investigation on the theory of the brownian movement[R]. New York:Dover,1956. [40] Batchelor G K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. J. Fluid Mech.,1977,83(1):97-117. [41] Hosseini S M,Moghadassi A R,Henneke D E. A new dimensionless group model for determining the viscosity of nanofluids[J]. Journal of Thermal Analysis and Calorimetry,2010,100(3):873-877. [42] Yang Liu,Du Kai,Ding Yuehong,et al. Viscosity-prediction models of ammonia water nanofluids based on various dispersion types[J].Powder Technology,2012,215/216:210-218. [43] Li Xinfang,Zhu Dongsheng,Wang Xianju. Experimental investigation on viscosity of Cu-H2O nanofluids[J]. Journal of Wuhan University of Technology:Materials Science Edition,2009,24(1):98-103. [44] Ghadimi A,Metselaar I H. The influence of surfactant and ultrasonic processing on improvement of stability,thermal conductivity and viscosity of Titania nanofluid[J]. Experimental Thermal and Fluid Science,2013,51:1-9. |