[1] Alvarez-Galvan M C,Mota N,Ojeda M,et al. Direct methane conversion routes to chemicals and fuels[J]. Catal. Today,2011,171:15-23. [2] Elvira P,Michael S,Markus H,et al. Modified lanthanum catalysts for oxidative chlorination of methane[J]. Top. Catal.,2009,52:1220-1231. [3] Patrick G,Michel P. Complete oxidation of methane at low temperature over noble metal based catalysts:A review[J]. Appl. Catal. B:Environ.,2002,39:1-37 [4] 应卫勇,曹发海,房鼎业. 碳一化工主要产品生产技术[M]. 北京:化学工业出版社,2004. [5] George A O,Balaram G,Morteza F,et al. Selective monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over γ-alumina-supported metal oxide/hydroxide catalysts:A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether[J]. J. Am. Chem. Soc.,1985,107:7097-7105. [6] Stian S,Sharmala A,Morten B,et al. The methyl halide to hydrocarbon reaction over H-SAPO-34[J]. Journal of Catalysis,2006,241:243-254. [7] Zhang D Z,Wei Y X,Xu L,et al. Chloromethane conversion to higher hydrocarbons over zeolites and SAPOs[J]. Catal. Lett.,2006,109:97-101 [8] 张大治,魏迎旭,沈江汉,等. 氯甲烷在镁修饰的ZSM-5分子筛催化剂上催化转化研究[J]. 天然气化工,2006,31:14-18. [9] 张大治. 分子筛催化转化氯甲烷制取低碳烯烃及其反应机理的研究[D]. 大连:中国科学院大连化学物理研究所,2006. [10] 叶丽萍,胡浩,曹发海,等. SAPO-34分子筛的合成及其对甲醇制低碳烯烃反应的催化性能[J]. 华东理工大学学报:自然科学版,2010,36(1):6-13. [11] Unni O,Ole Vaaland S,Naresh B M,et al. Methane conversion to light olefins-How does the methyl halide route differ from the methanol to olefins (MTO) route?[J]. Catal. Today,2011,171:211-220. [12] Wei Y X,Zhang D Z,Xu L,et al. Synthesis,characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins[J]. Catal. Today,2008,131:262-269. [13] Zhang D Z,Zhang D Z,Xu L,et al. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR[J]. J. Catal.,2006,238:46-57. [14] Xu L,Du A P,Wei Y X,et al. Synthesis of SAPO-34 with only Si(4Al) species:Effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34[J]. Micropor. Mesopor. Mat.,2008,115:332-337. [15] Wang P F,Lv A P,Hu J,et al. The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction[J]. Micropor. Mesopor. Mat.,2012,152:178-184. [16] Sung H J,Jong-San C,Young K H. Crystal morphology control of AFI type molecular sieves with microwave irradiation[J]. J. Mater. Chem.,2004,14:280-285. [17] Tan J,Liu Z M,Bao X H,et al. Crystallization and Si incorporation mechanisms of SAPO-34[J]. Micropor. Mesopor. Mat.,2002,53:97-108. [18] Barthomeuf D. Topological model for the compared acidity of SAPOs and SiAl zeolites[J]. Zeolites,1994,14:394-401. [19] Qi G Z,Xie Z K,Yang W M,et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins[J]. Fuel Process Technol.,2007,88:437-441. [20] Nilsen M H,Svelle S,Aravinthan S,et al. The conversion of chloromethane to light olefins over SAPO-34:The influence of dichloromethane addition[J]. Appl. Catal. A:Gen.,2009,367:23-31. [21] James F H,Song W G,David M M,et al. The mechanism of methanol to hydrocarbon catalysis[J]. ACC. Chem. Res.,2003,36:317-326. [22] Samia I,Aditya B. Mechanism of the catalytic conversion of methanol to hydrocarbons[J]. ACS Catal.,2013,3:18-31. |