化工进展 ›› 2021, Vol. 40 ›› Issue (12): 6859-6875.DOI: 10.16085/j.issn.1000-6613.2021-0092
黄从新1,2(), 王顺藤1,2, 范宇莹2,3, 简美鹏4,5(), 唐朝春1, 刘锐平2,6()
收稿日期:
2021-01-14
修回日期:
2021-03-07
出版日期:
2021-12-05
发布日期:
2021-12-21
通讯作者:
简美鹏,刘锐平
作者简介:
黄从新(1997—),男,硕士研究生,研究方向为水处理理论与技术。E-mail:基金资助:
HUANG Congxin1,2(), WANG Shunteng1,2, FAN Yuying2,3, JIAN Meipeng4,5(), TANG Chaochun1, LIU Ruiping2,6()
Received:
2021-01-14
Revised:
2021-03-07
Online:
2021-12-05
Published:
2021-12-21
Contact:
JIAN Meipeng,LIU Ruiping
摘要:
二维(2D)纳米片是一类非常具有前瞻性的多孔材料。作为新型的高性能吸附剂,与传统吸附材料相比,超薄2D多孔纳米片具有高比表面积、原子级厚度和几乎完全裸露的活性位点等优点,可快速有效地捕获水体中的(有机或无机)污染物质。本综述总结了两类代表性的超薄2D多孔纳米片[金属有机骨架材料(MOFs)和共价有机骨架材料(COFs)]作为优良吸附剂去除水环境中有机染料、有毒重金属和放射性元素的最新进展。介绍了该类化合物的结构特性和物理化学性质,总结了四种常用合成方法,重点分析了四种方法的优缺点以及面临的挑战,并对不同的合成方法进行了特点比较。阐述了超薄2D多孔纳米片在水中对各种污染物的吸附条件和吸附性能,对相关吸附机理做了系统总结和对比。论述了材料的再生性能,总结分析了再生过程中可能遇到的问题。最后对当前超薄2D多孔纳米片存在的不足、合成条件复杂等问题,提出了材料的合成优化、绿色无毒或低毒新技术的开发、重复使用效率的提高将会是未来的发展方向。
中图分类号:
黄从新, 王顺藤, 范宇莹, 简美鹏, 唐朝春, 刘锐平. 超薄二维多孔纳米片在水处理中的研究进展[J]. 化工进展, 2021, 40(12): 6859-6875.
HUANG Congxin, WANG Shunteng, FAN Yuying, JIAN Meipeng, TANG Chaochun, LIU Ruiping. Advance of ultrathin 2D porous nanosheets in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6859-6875.
制备方法 | 制备条件 | 特点 | 产品质量 |
---|---|---|---|
微机械剥离 | 以层状块体为原料,借助透明胶带或研磨 | 缺陷少,厚度和形状难控制,适合大的层状晶体材料 | 尺寸小,产量极低 |
液基剥离 | 以层状粉末为原料,通过插层剂或超声的方式 | 成本较低,操作相对简单,可量化生产,不使用有毒有害的有机溶剂 | 尺寸较小,较宽的厚度,产量偏低 |
化学气相沉积 | 特定的CVD设备,高温高真空,挥发性前体在基体上沉积 | 衬底选择不具有任意性,不可避免地会引入残留物和缺陷,低温下合成难度大 | 产品纯度高,质量好,多为片状 |
水热合成 | 高温或蒸气压下,在水溶液或有机溶液中结晶 | 成本低,高产率,可大批量生产,控制参数多,获得单层纳米片难度大 | 成分可控,大型优质,纳米薄片 |
表1 几种超薄2D多孔纳米片的制备方法比较
制备方法 | 制备条件 | 特点 | 产品质量 |
---|---|---|---|
微机械剥离 | 以层状块体为原料,借助透明胶带或研磨 | 缺陷少,厚度和形状难控制,适合大的层状晶体材料 | 尺寸小,产量极低 |
液基剥离 | 以层状粉末为原料,通过插层剂或超声的方式 | 成本较低,操作相对简单,可量化生产,不使用有毒有害的有机溶剂 | 尺寸较小,较宽的厚度,产量偏低 |
化学气相沉积 | 特定的CVD设备,高温高真空,挥发性前体在基体上沉积 | 衬底选择不具有任意性,不可避免地会引入残留物和缺陷,低温下合成难度大 | 产品纯度高,质量好,多为片状 |
水热合成 | 高温或蒸气压下,在水溶液或有机溶液中结晶 | 成本低,高产率,可大批量生产,控制参数多,获得单层纳米片难度大 | 成分可控,大型优质,纳米薄片 |
吸附剂 | 吸附剂 带电性 | 染料 | 吸附强弱 | 主要吸附机理 | 文献来源 |
---|---|---|---|---|---|
[(CH3)2NH2]2[(Ca4O)L4(H2O)4]·6DMF (SHU-1) | - | MG、CR、CV、RhB | MG>RhB>CR>CV | 尺寸排斥、酸碱相互作用、π-π相互作用 | [ |
IPM-MOF-201 | + | MO、MB、IC、BTB | MO>IC>MB>BTB | —SO | [ |
[(CH3)2NH2][UO2(TATAB)]·2DMF·4H2O (U-TATAB) | - | MB、ST、茜素、MO、EY | MB>ST>茜素>MO>EY | 层间不配位阳离子与阳离子染料离子交换作用、仲胺基团与染料相互作用 | [ |
Cu-TCPP-MOF | - | RhB、MB、CR | MB>CR>RhB | —COO-与染料分子相互作用、静电作用 | [ |
Ni-MOF | - | MB、CR | MB>CR | 静电引力、π-π相互作用、氢键相互作用 | [ |
[Zn2(tpdc)2(H2O)2](H2O)2(DMF)5 (Zn-MOF) | 中性 | NR、BR-2、MO | NR>BR-2>MO | 尺寸选择 | [ |
Ttba-TPDA-COF | - | RhB | — | 三嗪基和亚氨基与RhB分子的静电作用 | [ |
PC-COF | + | MO、AG-25、DFBM、AR-27 | AR-27>MO>DFBM>AG-25 | 染料与层间Cl-交换作用 | [ |
表2 各种超薄2D多孔纳米片吸附水中染料的差异对比
吸附剂 | 吸附剂 带电性 | 染料 | 吸附强弱 | 主要吸附机理 | 文献来源 |
---|---|---|---|---|---|
[(CH3)2NH2]2[(Ca4O)L4(H2O)4]·6DMF (SHU-1) | - | MG、CR、CV、RhB | MG>RhB>CR>CV | 尺寸排斥、酸碱相互作用、π-π相互作用 | [ |
IPM-MOF-201 | + | MO、MB、IC、BTB | MO>IC>MB>BTB | —SO | [ |
[(CH3)2NH2][UO2(TATAB)]·2DMF·4H2O (U-TATAB) | - | MB、ST、茜素、MO、EY | MB>ST>茜素>MO>EY | 层间不配位阳离子与阳离子染料离子交换作用、仲胺基团与染料相互作用 | [ |
Cu-TCPP-MOF | - | RhB、MB、CR | MB>CR>RhB | —COO-与染料分子相互作用、静电作用 | [ |
Ni-MOF | - | MB、CR | MB>CR | 静电引力、π-π相互作用、氢键相互作用 | [ |
[Zn2(tpdc)2(H2O)2](H2O)2(DMF)5 (Zn-MOF) | 中性 | NR、BR-2、MO | NR>BR-2>MO | 尺寸选择 | [ |
Ttba-TPDA-COF | - | RhB | — | 三嗪基和亚氨基与RhB分子的静电作用 | [ |
PC-COF | + | MO、AG-25、DFBM、AR-27 | AR-27>MO>DFBM>AG-25 | 染料与层间Cl-交换作用 | [ |
金属离子 | 吸附剂 | 吸附强弱 | 主要吸附机理 | 文献 来源 |
---|---|---|---|---|
Hg2+ | {[Co(NCS)2(pyz)2]}n (2D-NCS) | 高亲和力(Kd=2.26×106mL/g) | 2D-NCS的吡嗪环之间的阳离子-π相互作用,硫氰酸根与Hg2+的螯合作用 | [ |
Hg2+、Pb2+、Cu2+、Zn2+ | COF-S-SH | Hg2+>Pb2+>Cu2+>Zn2+ | 含硫基团与Hg2+的螯合作用 | [ |
Pb2+、Cu2+、Fe3+、Cd2+、Mn2+、Cr6+ | COF-SH | Pb2+>Cu2+>Fe3+>Cd2+>Mn2+>Cr6+ | Pb2+与巯基之间的静电吸引或螯合作用 | [ |
Pb2+、Cu2+、Ni2+、Co2+、Cd2+ | Zn(Bim)(OAc)-NS | Pb2+>Cu2+>Ni2+>Co2+>Cd2+ | —NH2、—OH与重金属离子的络合作用 | [ |
Pb2+、Ni2+、Zn2+、Cu2+、Cd2+ | [Ca(H4L)(DMA)2]·2DMA (Ca-MOF) | Pb2+>Cd2+>Ni2+>Cu2+>Zn2+ | Ca2+与重金属离子之间的离子交换作用 | [ |
Cu2+、Hg2+、Pb2+、Cd2+、Cr2+ | TpODH-COF | Cu2+>Hg2+>Pb2+>Cr2+>Cd2+ | Cu2+与酰胺、氨基和羰基之间的配位作用 | [ |
UO | MPCOF | UO | 颗粒内扩散和阳离子筛分效应 | [ |
表3 各种超薄2D多孔纳米片用于水中重金属离子吸附的差异对比
金属离子 | 吸附剂 | 吸附强弱 | 主要吸附机理 | 文献 来源 |
---|---|---|---|---|
Hg2+ | {[Co(NCS)2(pyz)2]}n (2D-NCS) | 高亲和力(Kd=2.26×106mL/g) | 2D-NCS的吡嗪环之间的阳离子-π相互作用,硫氰酸根与Hg2+的螯合作用 | [ |
Hg2+、Pb2+、Cu2+、Zn2+ | COF-S-SH | Hg2+>Pb2+>Cu2+>Zn2+ | 含硫基团与Hg2+的螯合作用 | [ |
Pb2+、Cu2+、Fe3+、Cd2+、Mn2+、Cr6+ | COF-SH | Pb2+>Cu2+>Fe3+>Cd2+>Mn2+>Cr6+ | Pb2+与巯基之间的静电吸引或螯合作用 | [ |
Pb2+、Cu2+、Ni2+、Co2+、Cd2+ | Zn(Bim)(OAc)-NS | Pb2+>Cu2+>Ni2+>Co2+>Cd2+ | —NH2、—OH与重金属离子的络合作用 | [ |
Pb2+、Ni2+、Zn2+、Cu2+、Cd2+ | [Ca(H4L)(DMA)2]·2DMA (Ca-MOF) | Pb2+>Cd2+>Ni2+>Cu2+>Zn2+ | Ca2+与重金属离子之间的离子交换作用 | [ |
Cu2+、Hg2+、Pb2+、Cd2+、Cr2+ | TpODH-COF | Cu2+>Hg2+>Pb2+>Cr2+>Cd2+ | Cu2+与酰胺、氨基和羰基之间的配位作用 | [ |
UO | MPCOF | UO | 颗粒内扩散和阳离子筛分效应 | [ |
污染物 | 吸附剂 | 解吸剂 | 再生性能 | 文献来源 |
---|---|---|---|---|
CR、RhB、MB、MO | {[Mn3(L1)2(L2)2(H2O)8]·4H2O}n(Mn-MOF) | DMF | 95%(5次) | [ |
CR、MO | {[Zn2(5-OH-BDC)2L2]·1.5H2O}n(Zn-MOF) | — | 86.79%(7次) | [ |
MB | [(1,2-DPE)Co2Cl2]n(HT-1) | 乙醇 | >80%(5次) | [ |
Hg2+、Pb2+、Zn2+、Fe3+ | TAPB-BMTTPA-COF | 6mol/L的盐酸 | 92%(6次) | [ |
Cu2+、Hg2+、Pb2+、Cd2+、Cr2+ | TpODH-COF | 6mmol/L的盐酸 | 51%(2次) | [ |
Hg2+ | {Zn(BDC)(L?)}·DMF(TMU-40) | 0.5mol/L的硝酸 | 90%(3次) | [ |
表4 各种超薄2D多孔纳米片用于水中污染物吸附再生性能对比
污染物 | 吸附剂 | 解吸剂 | 再生性能 | 文献来源 |
---|---|---|---|---|
CR、RhB、MB、MO | {[Mn3(L1)2(L2)2(H2O)8]·4H2O}n(Mn-MOF) | DMF | 95%(5次) | [ |
CR、MO | {[Zn2(5-OH-BDC)2L2]·1.5H2O}n(Zn-MOF) | — | 86.79%(7次) | [ |
MB | [(1,2-DPE)Co2Cl2]n(HT-1) | 乙醇 | >80%(5次) | [ |
Hg2+、Pb2+、Zn2+、Fe3+ | TAPB-BMTTPA-COF | 6mol/L的盐酸 | 92%(6次) | [ |
Cu2+、Hg2+、Pb2+、Cd2+、Cr2+ | TpODH-COF | 6mmol/L的盐酸 | 51%(2次) | [ |
Hg2+ | {Zn(BDC)(L?)}·DMF(TMU-40) | 0.5mol/L的硝酸 | 90%(3次) | [ |
1 | XU J, CAO Z, ZHANG Y, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism[J]. Chemosphere, 2018, 195(3): 351-364. |
2 | SHERLALA A I A, RAMAN A A A, BELLO M M, et al. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption[J]. Chemosphere, 2018, 193(11): 1004-1017. |
3 | UPADHYAY R, SOIN N, ROY S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review[J]. RSC Advances, 2014, 4(29): 3823-3851. |
4 | LI T, LIN G, PODOLA B, et al. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR[J]. Journal of Hazardous Materials, 2015, 297(10): 112-118. |
5 | 李萱萱. 高级氧化技术在处理染料废水中的应用[J]. 化工进展, 2012, 31(S2): 219-222. |
LI Xuanxuan. Application of advanced oxidation in dye wastewater treatment[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 219-222. | |
6 | 黄智辉, 纪志永, 陈希, 等. 过硫酸盐高级氧化降解水体中有机污染物研究进展[J]. 化工进展, 2019, 38(5): 2461-2470. |
HUANG Zhihui, JI Zhiyong, CHEN Xi, et al. Degradation of organic pollutants in water by persulfate advanced oxidation[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2461-2470. | |
7 | 唐朝春, 许荣明. 电化学法除镍研究进展[J]. 工业水处理, 2018, 38(12): 10-14, 19. |
TANG Chaochun, Xu Rongming. Research progress in nickel removal by electrochemical method[J]. Industrial Water Treatment, 2018, 38(12): 10-14, 19. | |
8 | 王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706. |
WANG Chongqing, WANG Hui, JIANG Xiaoyan, et al. Research advances on adsorption of heavy metals by biochar[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 692-706. | |
9 | 杨光绪, 龚正刚, 罗小林, 等. 氯代UiO-66吸附染色纸废水中罗丹明B和刚果红[J]. 化工进展, 2019, 38(7): 3434-3442. |
YANG Guangxu, GONG Zhenggang, LUO Xiaolin, et al. Adsorption of Rhodamine B and Congo red in dyeing paper wastewater by chlorinesubstituted UiO-66[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3434-3442. | |
10 | MATLOCK M M, HOWERTON B S, ATWOOD D A. Chemical precipitation of heavy metals from acid mine drainage[J]. Water Research, 2002, 36(19): 4757-4764. |
11 | 覃发梅, 邱学青, 孙川, 等. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(7): 3390-3401. |
QIN Famei, QIU Xueqing, SUN Chuan, et al. Research progress in nanocellulose for the removal of heavy metal ions in water[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3390-3401. | |
12 | 张帆, 李菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11): 2749-2756. |
ZHANG Fan,LI Jing,TAN Jianhua,et al. Advance of the treatment of heavy metal wastewater by adsorption[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2749-2756. | |
13 | HO Y S. Review of second-order models for adsorption systems[J]. Journal of Hazardous Materials, 2006, 136(3): 681-689. |
14 | ALI I. New generation adsorbents for water treatment[J]. Chemical Reviews, 2012, 112(10): 5073-5091. |
15 | 文永林, 刘攀, 汤琪. 农林废弃物吸附脱除废水中重金属研究进展[J]. 化工进展, 2016, 35(4): 1208-1215. |
WEN Yonglin, LIU Pan, TANG Qi. Review of removal of heavy metal ions from wastewater with agricultural and forestry waste as adsorbent[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1208-1215. | |
16 | 申朋飞, 朱颖颖, 李信宝, 等. 植物基活性炭的制备及吸附应用研究进展[J]. 化工进展, 2019, 38(8): 3763-3773. |
SHEN Pengfei, ZHU Yingying, LI Xinbao, et al. Review on preparation of plant-based activated carbon and its adsorption application[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3763-3773. | |
17 | ERSAN G, APUL O G, PERREAULT F, et al. Adsorption of organic contaminants by graphene nanosheets: a review[J]. Water Research, 2017, 126(10): 385-398. |
18 | LI A, SUN H X, TAN D Z, et al. Superhydrophobic conjugated microporous polymers for separation and adsorption[J]. Energy & Environment Science, 2011, 4(6): 2062-2065. |
19 | WANG H S, LIU H L, WANG K, et al. Insight into the unique fluorescence quenching property of metal-organic frameworks upon DNA binding[J]. Analytical Chemistry, 2017, 89(21): 11366-11371. |
20 | SONG W J. Intracellular DNA and microRNA sensing based on metal-organic framework nanosheets with enzyme-free signal amplification[J]. Talanta, 2017, 170(8): 74-80. |
21 | WANG H S, LI J, LI J Y, et al. Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells[J]. NPG Asia Materials, 2017, 9(3): 354-362. |
22 | ZHAO M, HUANG Y, PENG Y, et al. Two-dimensional metal-organic framework nanosheets: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(16): 6267-6295. |
23 | YOO E, KIM J, HOSONO E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282. |
24 | DERIA P, MONDLOCH J E, KARAGIARIDI O, et al. Cheminform abstract: beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement[J]. ChemInform, 2014, 45(43): 5896-5912. |
25 | PARK I H, JU H, HERNG T S, et al. Supramolecular isomerism and polyrotaxane-based two-dimensional coordination polymers[J]. Crystal Growth & Design, 2016, 16(12): 7278-7287. |
26 | AHMED F, ROY S, NASKAR K, et al. Halogen…halogen interactions in the supramolecular assembly of 2D coordination polymers and the CO2 sorption behavior[J]. Crystal Growth & Design, 2016, 16(9): 5514-5535. |
27 | ZHAO M, LU Q, MA Q, et al. Two-dimensional metal-organic framework nanosheets[J]. Small Methods, 2016, 1(1/2): 1600030-1600037. |
28 | BAI W, LI S, MA J, et al. Ultrathin 2D metal-organic framework (nanosheets and nanofilms)-based xD-2D hybrid nanostructures as biomimetic enzymes and supercapacitors[J]. Journal of Materials Chemistry A, 2019, 7(15): 9086-9098. |
29 | PENG Y, LI Y, BAN Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
30 | DOONAN C J, TRANCHEMONTAGNE D J, GLOVER T G, et al. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2010, 2(3): 235-238. |
31 | ZOU X Q, REN H, ZHU G S, et al. Topology-directed design of porous organic frameworks and their advanced applications[J]. Chemical Communications Royal Society of Chemistry, 2013, 49(38): 3925-3936. |
32 | COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
33 | KUHN P, ANTONIETTI M, Porous THOMAS A., covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie, 2008, 47(18): 3450-3453. |
34 | FANG Q, ZHUANG Z, GU S, et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks[J]. Nature Communications, 2014, 5(1): 4503-4510. |
35 | DING S, WANG W. Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
36 | HUANG N, ZHAI L, COUPRY D E, et al. Multiple-component covalent organic frameworks[J]. Nature Communications, 2016, 7(1): 12325. |
37 | FENG X, DING X, JIANG D. Covalent organic frameworks[J]. Chemical Society Reviews, 2012, 41(18): 6010-6022. |
38 | WALLER P J, GANDARA F, YAGHI O M. Chemistry of covalent organic frameworks[J]. Accounts of Chemical Research, 2015, 48(12): 3053-3063. |
39 | HOU Y, ZHANG X, WANG C, et al. Novel imine-linked porphyrin covalent organic frameworks with good adsorption removing properties of RhB[J]. New Journal of Chemistry, 2017, 41(14): 6145-6151. |
40 | GAO J, JIANG D. Covalent organic frameworks with spatially confined guest molecules in nanochannels and their impacts on crystalline structures[J]. Chemical Communications, 2016, 52(7): 1498-1500. |
41 | WU M X, YANG Y W. Applications of covalent organic frameworks (COFs): from gas storage and separation to drug delivery[J]. Chinese Chemical Letters, 2017, 28(6): 1135-1143. |
42 | CROWE J W, BALDWIN L A, MCGRIER P L. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units[J]. Journal of the American Chemical Society, 2016, 138(32): 10120-10123. |
43 | YUE J Y, MO Y P, LI S Y, et al. Simultaneous construction of two linkages for the on-surface synthesis of imine-boroxine hybrid covalent organic frameworks[J]. Chemical Science, 2017, 8(3): 2169-2174. |
44 | LIU Y, MA Y, ZHAO Y, et al. Weaving of organic threads into a crystalline covalent organic framework[J]. Science, 2016, 351(6271): 365-369. |
45 | VYAS V S, HAASE F, STEGBAUER L, et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation[J]. Nature Communications, 2015, 6(1): 8508-8516. |
46 | LANNI L M, TILFORD R W, BHARATHY M, et al. Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2011, 133(35): 13975-13983. |
47 | NAGAI A, GUO Z, FENG X, et al. Pore surface engineering in covalent organic frameworks[J]. Nature Communications, 2011, 2(1): 536-543. |
48 | BANERJEE R, BISWAL B P, KANDAMBETH S, et al. Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption[J]. Journal of Materials Chemistry A, 2015, 3(47): 1-7. |
49 | PENG Y, HUANG Y, ZHU Y, et al. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection[J]. Journal of the American Chemical Society, 2017, 139(25): 8698-8704. |
50 | ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. |
51 | NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceeding of the National Academy Sciences of the United States of America, 2005, 102(30): 10451-10453. |
52 | WANG S, WANG Q, SHAO P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries[J]. Journal of the American Chemical Society, 2017, 139(12): 4258-4261. |
53 | NIU L, COLEMAN J N, ZHANG H, et al. Production of two-dimensional nanomaterials via liquid-based direct exfoliation[J]. Small, 2016, 12(3): 272-293. |
54 | LI P Z, MAEDA Y, XU Q. Top-down fabrication of crystalline metal-organic framework nanosheets[J]. Chemical Communications, 2011, 47(29): 8436-8438. |
55 | BUNCK D N, DICHTEL W R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks[J]. Journal of the American Chemical Society, 2013, 135(40): 14952-14955. |
56 | HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
57 | SHIN Y R, JUNG S M, JEON I Y, et al. The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture[J]. Carbon, 2013, 52(2): 493-498. |
58 | DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. |
59 | KHAYUM M A, KANDAMBETH S, MITRA S, et al. Chemically delaminated free-standing ultrathin covalent organic nanosheets[J]. Angewandte Chemie, 2016, 128(50): 15833-15837. |
60 | HANLON D, BACKES C, HIGGINS T M, et al. Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors[J]. Chemistry of Materials, 2014, 26(4): 1751-1763. |
61 | BACKES C, SMITH R J, MCEVOY N, et al. Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets[J]. Nature Communications, 2014, 5(1): 4576-4585. |
62 | CHHOWALLA M, LIU Z, ZHANG H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets[J]. Chemical Society Reviews, 2015, 44(9): 2584-2586. |
63 | STEPANOW S, LINGENFELDER M, DMITRIEV A, et al. Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems[J]. Nature Materials, 2004, 3(4): 229-233. |
64 | CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. |
65 | TAM K H, CHEUNG C K, LEUNG Y H, et al. Defects in ZnO nanorods prepared by a hydrothermal method[J]. The Journal of Physical Chemistry B, 2006, 110(42): 20865-20871. |
66 | LEE Y H, ZHANG X Q, ZHANG W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. |
67 | JIAN M, LIU H, WILLIAMS T, et al. Temperature-induced oriented growth of large area, few-layer 2D metal-organic framework nanosheets[J]. Chemical Communications, 2017, 53(98): 13161-13164. |
68 | LIU W, LI X, WANG C, et al. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction [J]. Journal of the American Chemical Society, 2019, 141(43): 17431-17440. |
69 | EVANS A E V, MATEO-SAGASTA J, QADIR M, et al. Agricultural water pollution: key knowledge gaps and research needs[J]. Current Opinion in Environmental Sustainability, 2019, 36(2): 20-27. |
70 | GAO Q, XU J, BU X H. Recent advances about metal-organic frameworks in the removal of pollutants from wastewater[J]. Coordination Chemistry Reviews, 2019, 378(1): 17-31. |
71 | SUN Y, LEI C, KHAN E, et al. Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment[J]. Science of the Total Environment, 2018, 615(2): 498-507. |
72 | POUREBRAHIM F, GHAEDI M, DASHTIAN K, et al. Optimization of solid phase dispersive field-assisted ultrasonication for the extraction of auramine O and crystal violet dyes using central composite design[J]. Applied Organometallic Chemistry, 2018, 32(3): 4181-4191. |
73 | KAYKHAII M, SASANI M, MARGHZARI S. Removal of dyes from the environment by adsorption process[J]. Chemical and Materials Engineering, 2018, 6(2): 31-35. |
74 | CUI K, YAN B, XIE Y, et al. Regenerable urchin-like Fe3O4@PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes[J]. Journal of Hazardous Materials, 2018, 350(5): 66-75. |
75 | DONG B, TANG M, LIU W, et al. Solvent- and temperature-induced multiple crystal phases: crystal structure, selective adsorption, and separation of organic dye in three S-containing {[Cd(MIPA)]n}n- homologues[J]. Crystal Growth & Design, 2016, 16(11): 6363-6370. |
76 | WANG X S, LIANG J, LI L, et al. An anion metal-organic framework with Lewis basic sites-rich toward charge-exclusive cationic dyes separation and size-selective catalytic reaction[J]. Inorg. Chem., 2016, 55(5): 2641-2649. |
77 | WU M K, YI F, FANG Y, et al. An ultrastable metal-organic framework with open coordinated sites realizing selective separation toward cationic dyes in aqueous solution[J]. Crystal Growth & Design, 2017, 17(10): 5458-5464. |
78 | SONG Y, FAN R Q, XING K, et al. Insight into the controllable synthesis of Cu(Ⅰ)/Cu(Ⅱ) metal organic complexes: size-exclusive selective dye adsorption and semiconductor properties[J]. Crystal Growth & Design, 2017, 17(5): 2549-2559. |
79 | LI H, FANG X, MA S, et al. A two-dimensional porous framework: solvent-induced structural transformation and selective adsorption towards malachite green[J]. Dalton Transactions, 2017, 46(26): 8350-8353. |
80 | DESAI A, ROY A, SAMANTA P, et al. Base resistant ionic metal-organic framework as a porous ion-exchange sorbent[J]. iScience, 2018, 3(4): 21-30. |
81 | ZHANG N, XING Y, BAI F. A uranyl-organic framework featuring two-dimensional graphene-like layered topology for efficient iodine and dyes capture[J]. Inorganic Chemistry, 2019, 58(10): 6866-6876. |
82 | BAI Z, WANG Y, LI Y, et al. First cationic uranyl-organic framework with anion-exchange capabilities[J]. Inorganic Chemistry, 2016, 55(13): 6358-6360. |
83 | TAN J, ZHOU B, LIANG C, et al. Secondary-amine-functionalized isoreticular metal-organic frameworks for controllable and selective dye capture[J]. Materials Chemistry Frontiers, 2018, 2(1): 129-135. |
84 | CHEN Q, HE Q, LYU M, et al. Selective adsorption of cationic dyes by UiO-66-NH2[J]. Applied Surface Science, 2015, 327(103): 77-85. |
85 | ZHAO S, LI S, ZHAO Z, et al. Microwave-assisted hydrothermal assembly of 2D copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water[J]. Environmental Science and Pollution Research, 2020, 27(31): 39186-39197. |
86 | SALAM H M ABD EL, ZAKI T. Removal of hazardous cationic organic dyes from water using nickel-based metal-organic frameworks[J]. Inorganica Chimica Acta, 2018, 471(40): 203-210. |
87 | YANG J, XIONG P, ZHENG C, et al. Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode[J]. Journal of Materials Chemistry A, 2014, 2(39): 16640-16644. |
88 | LI Y, YUAN H H, LI C P, et al. A 2D Zn(Ⅱ) metal-organic framework to show selective removal of Neutral red (NR) from water[J]. Inorganic Chemistry Communications, 2017, 80(6): 36-40. |
89 | XU T, AN S, PENG C, et al. Construction of large-pore crystalline covalent organic framework as high-performance adsorbent for Rhodamine B dye removal[J]. Industrial & Engineering Chemistry Research, 2020, 59(4): 8315-8322. |
90 | WANG T, KAILASAM K, XIAO P, et al. Adsorption removal of organic dyes on covalent triazine framework (CTF)[J]. Microporous and Mesoporous Materials, 2014, 187(16): 63-70. |
91 | YU S B, LYU H, TIAN J, et al. A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants[J]. Polymer Chemistry, 2016, 7(20): 3392-3397. |
92 | BURAKOV A E, GALUNIN E, BURAKOVA I V, et al. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review[J]. Ecotoxicology and Environmental Safety, 2018, 148(1): 702-712. |
93 | ABNEY C W, MAYES R T, SAITO T, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23): 13935-14013. |
94 | MORI N, YASUTAKE A, MARUMOTO M, et al. Methylmercury inhibits electron transport chain activity and induces cytochrome c release in cerebellum mitochondria[J]. Journal of Toxicological Ences, 2011, 36(3): 253-259. |
95 | LI Y K, YANG T, CHEN M L, et al. Recent advances in nanomaterials for analysis of trace heavy metals[J]. Critical Reviews in Analytical Chemistry, 2020, 5(17): 1-20. |
96 | FLEGAL A R, GALLON C, GANGULI P M, et al. All the lead in China[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(17): 1869-1944. |
97 | WANG C, HE C, LUO Y H, et al. Efficient mercury chloride capture by ultrathin 2D metal-organic framework nanosheets[J]. Chemical Engineering Journal, 2020, 379(1): 122337-122344. |
98 | SUN Q, AGUILA B, PERMAN J A, et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal[J]. Journal of the American Chemical Society, 2017, 139(7): 2786-2793. |
99 | CAO Y, HU X, ZHU C, et al. Sulfhydryl functionalized covalent organic framework as an efficient adsorbent for selective Pb(Ⅱ) removal[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600(9): 125004-125032. |
100 | XU R, JIAN M, JI Q, et al. 2D water-stable zinc-benzimidazole framework nanosheets for ultrafast and selective removal of heavy metals[J]. Chemical Engineering Journal, 2020, 382(8): 122658-122668. |
101 | MARGARITI A, RAPTI S, KATSENIS A D, et al. Cu2+ sorption from aqueous media by a recyclable Ca2+ framework[J]. Inorganic Chemistry Frontiers, 2017, 4(5): 773-781. |
102 | LI Y, WANG C, MA S, et al. Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11706-11714. |
103 | ZHANG S, ZHAO X, LI B, et al. “Stereoscopic” 2D super-microporous phosphazene-based covalent organic framework: design, synthesis and selective sorption towards uranium at high acidic condition[J]. Journal of Hazardous Materials, 2016, 314(8): 95-104. |
104 | LIU J, ZHANG X Y, HOU J X, et al. Functionalized Mn(Ⅱ)-MOF based on host-guest interaction for selective and rapid capture of Congo red from water[J]. Journal of Solid State Chemistry, 2019, 270(39): 697-704. |
105 | LIU L L, CHEN J, ZHANG Y, et al. Fabrication of ultrathin single-layer 2D metal-organic framework nanosheets with excellent adsorption performance via a facile exfoliation approach[J]. Journal of Materials Chemistry A, 2021, 9(1): 546-555. |
106 | SALEH H A M, MANTASHA I, QASEM K M A, et al. A two dimensional Co(Ⅱ) metal-organic framework with bey topology for excellent dye adsorption and separation: exploring kinetics and mechanism of adsorption[J]. Inorganica Chimica Acta, 2020, 512(27): 119900-119908. |
107 | HUANG N, ZHAI L, XU H, et al. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions[J]. Journal of the American Chemical Society, 2017, 139(6): 2428-2434. |
108 | ROUHANI F, MORSALI A. Fast and selective heavy metal removal by a novel metal-organic framework designed with in-situ ligand building block fabrication bearing free nitrogen[J]. Chemistry: A European Journal, 2018, 24(21): 5529-5537. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
[10] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[11] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[12] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[13] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[14] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |