1 |
中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020: 277-280.
|
|
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2020: 277-280.
|
2 |
朱法华,张静怡,徐振. 我国工业烟气治理现状、困境及建议[J]. 中国环保产业, 2020(10): 13-16.
|
|
ZHU Fahua, ZHANG Jingyi, XU Zhen. Current situation and predicament of China’s industrial flue gas treatment and relevant suggestions[J]. China Environmental Protection Industry, 2020(10): 13-16.
|
3 |
孙智滨, 常俊, 康英伟. 大型燃煤火电机组超低排放环保岛技术综述[J]. 热能动力工程, 2019, 34(5): 1-8.
|
|
SUN Zhibin, CHANG Jun, KANG Yingwei. A review of ultra-low emission environmental protection island technologies for large coal-fired power plants[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(5): 1-8.
|
4 |
李洋, 陈敏东, 薛志钢, 等. 燃煤电厂协同脱汞研究进展及强化措施[J]. 化工进展, 2014, 33(8): 2187-2191.
|
|
LI Yang, CHEN Mindong, XUE Zhigang, et al. Research on synergistic mercury removal of coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2187-2191.
|
5 |
LIU Guofu, BAO Wenyun, ZHANG Wei, et al. An intelligent control of NH3 injection for optimizing the NOx/NH3 ratio in SCR system[J]. Journal of the Energy Institute, 2019, 92(5): 1262-1269.
|
6 |
FAGHIHI E M, SHAMEKHI A H. Development of a neural network model for selective catalytic reduction (SCR) catalytic converter and ammonia dosing optimization using multi objective genetic algorithm[J]. Chemical Engineering Journal, 2010, 165(2): 508-516.
|
7 |
SULEMEN T M, SALEEM M, SIEBENHOFER M. Characterization of brush type discharge electrodes and impact of enhanced corona discharge on operation of electrostatic precipitators[J]. Journal of Electrostatics, 2012, 70(1): 144-148.
|
8 |
HUANG Rongting, YU Ran, WU Hao, et al. Investigation on the removal of SO3 in ammonia-based WFGD system[J]. Chemical Engineering Journal, 2016, 289: 537-543.
|
9 |
WU Qirong, GU Min, DU Yungui, et al. Chemical composition and morphology of particles emitted from a wet flue gas desulfurization (WFGD) system[J]. Process Safety and Environmental Protection, 2019, 124: 196-203.
|
10 |
KHAKHARIA P, HUIZINGA A, TRAP H, et al. Lab scale investigation on the formation of aerosol nuclei by a wet electrostatic precipitator in the presence of SO2 in a gas stream[J]. International Journal of Greenhouse Gas Control, 2019, 86: 22-33.
|
11 |
秦天牧, 刘吉臻, 杨婷婷, 等. 火电厂SCR烟气脱硝系统建模与运行优化仿真[J]. 中国电机工程学报, 2016, 36(10): 2699-2703.
|
|
QIN Tianmu, LIU Jizhen, YANG Tingting, at el. SCR denitration system modeling and operation optimization simulation for thermal power plant[J]. Proceedings of the CSEE, 2016, 36(10): 2699-2703.
|
12 |
李小龙, 朱法华, 段玖祥, 等. 600MW燃煤机组逃逸氨迁移规律与排放特性[J/OL]. 中国电机工程学报. .
|
|
LI Xiaolong, ZHU Fahua, DUAN Jiuxiang, et al. Migration law and emission characteristics of ammonia slip in a 600MW ultra-low emission coal-fired unit[J/OL]. Proceedings of the CSEE. .
|
13 |
周强泰. 锅炉原理[M]. 3版. 北京:中国电力出版社, 2013: 18-31.
|
|
ZHOU Qiangtai. Principles of boiler[M]. 3rd ed. Beijing: China Electric Power Press, 2013: 18-31.
|
14 |
COLOMBO M, NOVA I, TRONCONI E Detailed kinetic modeling of the NH3-NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for diesel exhausts after treatment[J]. Catalysis Today, 2012, 197(1): 243-255.
|
15 |
GAO Zhiming, PIHL J, LACLAIR T, et al. Global kinetic modeling of NH3-SCR with two sites of NH3 storage on Cu-SSZ-13[J]. Chemical Engineering Journal, 2021, 406: 127120.
|
16 |
张文博, 陈佳玲, 郭立, 等. 金属负载型分子筛催化剂的NH3-SCR机理研究进展[J/OL]. 燃料化学学报. .
|
|
ZHANG Wenbo, CHEN Jialing, GUO Li, at el. Research progress on NH3-SCR mechanism of metal-based zeolite catalysts[J/OL]. Journal of Fuel Chemistry and Technology. .
|
17 |
GROSSALE A, NOVA I, TRONCONI E, et al. The chemistry of the NO/NO2-NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis[J]. Journal of Catalysis, 2008, 256(2): 312-322.
|
18 |
张道军, 马子然, 孙琦, 等. 选择催化还原(SCR)反应机理研究进展[J]. 化工进展, 2019, 38(4): 1611-1623.
|
|
ZHANG Daojun, MA Ziran, SUN Qi, et al. Progress in the mechanism of selective catalytic reduction (SCR) reaction[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1611-1623.
|
19 |
SVAROVSKY L. Handbook of powder technology[M]. Amsterdam: Elsevier Scientific Publishing Company, 1981: 123-145.
|
20 |
武春锦, 吕武华, 梅毅, 等. 湿法烟气脱硫技术及运行经济性分析[J]. 化工进展, 2015, 34(12): 4368-4374.
|
|
WU Chunjin, Wuhua LYU, MEI Yi,et al. Application and running economic analysis of wet flue gas desulfurization technology[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4368-4374.
|
21 |
庄敏. 某600MW燃煤机组超低排放改造技术及应用效果[J]. 江苏电机工程, 2015, 34(3): 78-80.
|
|
ZHUANG Min. Ultralow emission transform technology and application for one 600MW coal-fired unit[J]. Jiangsu Electrica Engineering, 2015, 34(3): 78-80.
|
22 |
闫军, 何育东. 湿法脱硫石膏浆液的品质及其控制措施[J].电力环境保护, 2005, 21(4): 16-18.
|
|
YAN Jun, HE Yudong. The quality of gypsum slurry and its control in wet FGD[J]. Electric Power Environmental Protection, 2005, 21(4): 16-18.
|
23 |
中华人民共和国生态环境部 科技标准司. 燃煤电厂超低排放烟气治理工程技术规范: [S]. 北京: 中国环境科学出版社, 2018.
|
|
Department of Science and Technology Standards, Ministry of Ecology and Environment of the People’s Republic of China. Technical specifications for flue gas ultra-low emission engineering of coal-fired power plant: [S]. Beijing: China Environmental Science Press, 2018.
|