1 |
CHOMIAK Maciej, TRAWCZYNSKI Janusz. Effect of titania on the properties of Zn-Fe-O sorbents of hydrogen sulfide[J]. Fuel Processing Technology, 2015, 134: 92-97.
|
2 |
张四方, 陈虎, 任瑞鹏, 等. 高温煤气金属脱硫剂的研究进展[J]. 化工进展, 2014, 33(6): 1373-1379.
|
|
ZHANG Sifang, CHEN Hu, REN Ruipeng, et al. Research progress of metal sorbents for hot coal gas desulfurization[J]. Chemical Industy and Engineering Progress, 2014, 33(6): 1373-1379.
|
3 |
Tzuhsing KO, CHU Hsin, TSENG Jeoujen. Feasibility study on high-temperature sorption of hydrogen sulfide by natural soils[J]. Chemosphere, 2006, 64(6): 881-891.
|
4 |
TIAN Huan, WU Jiang, ZHANG Wenbo, et al. High performance of Fe nanoparticles/carbon aerogel sorbents for H2S removal[J]. Chemical Engineering Journal, 2017, 313: 1051-1060.
|
5 |
PAN Y, PERALES J, VELO E, et al. Kinetic behaviour of iron oxide sorbent in hot gas desulfurization[J]. Fuel, 2005, 84(9): 1105-1109.
|
6 |
ZHANG Jinchang, WANG Yanhui, MA Runyu, et al. A study on regeneration of Mn-Fe-Zn-O supported upon γ-Al2O3 sorbents for hot gas desulfurization[J]. Fuel Processing Technology, 2003, 84(1/2/3): 217-227.
|
7 |
ZHANG Rongjun, HUANG Jiejie, ZHAO Jiantao, et al. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization[J]. Energy & Fuels, 2007, 21(5): 2682-2687.
|
8 |
HUSSAIN Murid, ABBAS Naseem, FINO Debora, et al. Novel mesoporous silica supported ZnO adsorbents for the desulphurization of biogas at low temperatures[J]. Chemical Engineering Journal, 2012, 188: 222-232.
|
9 |
BU Xuepeng, YING Youju, JI Xuguo, et al. New development of zinc-based sorbents for hot gas desulfurization[J]. Fuel Processing Technology, 2007, 88(2): 143-147.
|
10 |
Wen Da OH, LEI Junxi, VEKSHA Andrei, et al. Influence of surface morphology on the performance of nanostructured ZnO-loaded ceramic honeycomb for syngas desulfurization[J]. Fuel, 2018, 211: 591-599.
|
11 |
WU Mengmeng, CHANG Bingwei, Teikthye LIM, et al. High-sulfur capacity and regenerable Zn-based sorbents derived from layered double hydroxide for hot coal gas desulfurization[J]. Journal of Hazardous Materials, 2018, 360(15): 391-401.
|
12 |
RODRIGUEZ Jose A, MAITI Amitesh. Adsorption and decomposition of H2S on MgO (100), NiMgO (100), and ZnO (0001) surfaces: a first-principles density functional study[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3630-3638.
|
13 |
WU Mengmeng, SHI Lei, Teikthye LIM, et al. Ordered mesoporous Zn-based supported sorbent synthesized by a new method for high-efficiency desulfurization of hot coal gas[J]. Chemical Engineering Journal, 2018, 353: 273-287.
|
14 |
Wen Da OH, LEI Junxi, VEKSHA Andrei, et al. Ni-Zn-based nanocomposite loaded on cordierite mullite ceramic for syngas desulfurization: performance evaluation and regeneration studies[J]. Chemical Engineering Journal, 2018, 351: 230-239.
|
15 |
WU Mengmeng, JIA Lei, FAN Huiling, et al. Hot coal gas desulfurization using regenerable ZnO/MCM41 prepared via one-step hydrothermal synthesis[J]. Energy & Fuels, 2017, 31(9): 9814-9823.
|
16 |
XIA Jun, SU Sheng, HU Song, et al. Effect of preparation conditions on MnxOy/Al2O3 sorbent for H2S removal from high-temperature synthesis gas[J]. Fuel, 2018, 223: 115-124.
|
17 |
ZHOU Jiaojiao, HAN Xue, TAO Kai, et al. Shish-kebab type MnCo2O4@Co3O4 nanoneedle arrays derived from MnCo-LDH@ZIF-67 for high-performance supercapacitors and efficient oxygen evolution reaction[J]. Chemical Engineering Journal, 2018, 354: 875-884.
|
18 |
王鉴, 孟庆明, 张健伟. 纳米ZnO的制备研究现状[J]. 化工新型材料, 2015(7): 242-244.
|
|
WANG Jian, MENG Qingming, ZHANG Jianwei. Research progress on preparation of nanometer zinc oxide[J]. New Chemical Maerials, 2015(7): 242-244.
|
19 |
ZHAO Mengqiang, ZHANG Qiang, HUANG Jiaqi, et al. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides[J]. Advanced Functional Materials, 2012, 22(4): 675-694.
|
20 |
HUANG Jianhang, YANG Zhanhong, WANG Ruijuan, et al. Zn-Al layered double oxides as high-performance anode materials for zinc-based secondary battery[J]. Journal of Materials Chemistry A, 2015, 3(14): 7429-7436.
|
21 |
GHUNGRUD Swapnil A, VAIDYA Prakash D, DEWOOLKAR Karan D. Cerium-promoted bi-functional hybrid materials made of Ni, Co and hydrotalcite for sorption-enhanced steam methane reforming (SESMR)[J]. International Journal of Hydrogen Energy, 2019, 44(2): 694-706.
|
22 |
PAHALAGEDARA Madhavi N, PAHALAGEDARA Lakshitha R, Chunghao KUO, et al. Ordered mesoporous mixed metal oxides: remarkable effect of pore size on catalytic activity[J]. Langmuir : the ACS Journal of Surfaces and Colloids, 2014, 30(27): 8228-8237.
|
23 |
YAN Kai, WU Xu, XIA An, et al. Novel preparation of nano-composite CuO-Cr2O3 using CTAB-template method and efficient for hydrogenation of biomass-derived furfural[J]. Functional Materials Letters, 2013, 6(1): 1350007.
|
24 |
ZHAO Ling, LI Xinyong, ZHAO Qidong, et al. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 704-709.
|
25 |
GAO Fengyu, WANG Jiangen, ZHAO Shunzheng, et al. Calcined ZnNiAl hydrotalcite-like compounds as bifunctional catalysts for carbonyl sulfide removal[J]. Catalysis Today, 2019, 327: 161-167.
|
26 |
畅炳蔚. 类水滑石基锌铝氧化物的制备及其脱硫性能的研究[D]. 太原: 太原理工大学, 2018.
|
|
CHANG Bingwei. Preparation and desulfurization performance of ZnAl LDO based on hydrotalcite-like compounds[D]. Taiyuan: Taiyuan University of Technology, 2018.
|
27 |
程福龙, 聂凡贵, 刘芳, 等. Mg/Fe类水滑石的磷酸根吸附性能及吸附机理[J]. 化学研究与应用, 2019, 31(12): 2085-2092.
|
|
CHENG Fulong, NIE Fangui, LIU Fang, et al. Phosphate adsorption performance and adsorption mechanism of Mg/Fe hydrotalcite-like[J]. Chemical Research and Application, 2019, 31(12): 2085-2092.
|
28 |
CHENG Fulong, GUO Heqin, CUI Jinglei, et al. Coupling of methanol and ethanol over CuMgAlOx catalysts: the roles of copper species and alkalinity[J]. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126(1): 119-136.
|
29 |
LIAO Fenglin, HUANG Yaqun, GE Junwei, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH[J]. Angewandte Chemie, 2010, 123(9): 2210-2213.
|
30 |
MCLAREN Anna, VALDES Solis Teresa, LI Guoqiang, et al. Shape and size effects of ZnO nanocrystals on photocatalytic activity[J]. Journal of the American Chemical Society, 2009, 131(35): 12540-12541.
|
31 |
JANG Euesoon, WON Jihyeon, HWANG Seongju, et al. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity[J]. Advanced Materials, 2006, 18(24): 3309-3312.
|