1 | 蒋丽红, 宋爽爽, 潘登, 等. Ni-P/TiO2非晶态催化剂对α-蒎烯加氢的性能[J]. 化工进展, 2019, 38(6): 2768-2775. | 1 | JIANG Lihong, SONG Shuangshuang, PAN Deng, et al. Study on the properties of amorphous catalyst Ni-P/TiO2 for hydrogenation of α-pinene[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2768-2775. | 2 | 王红琴, 王亚明, 蒋丽红, 等. [Rh(COD)Cl]2 催化剂的制备及催化α-蒎烯不对称加氢反应[J]. 化工进展, 2017, 36(1): 196-202. | 2 | WANG Hongqin, WANG Yaming, JIANG Lihong, et al. Preparation of [Rh(COD)Cl]2 catalyst and its activity for asymmetric hydrogenation of α-pinene[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 196-202. | 3 | 陈祥云, 朱本强, 袁冰, 等. 磁性碱木素胺稳定的Ru纳米粒子催化α-蒎烯加氢反应[J]. 高等学校化学学报, 2020, 41(8):1826-1835. | 3 | CHEN Xiangyun, ZHU Benqiang, YUAN Bing, et al. Hydrogenation of α-pinene catalyzed by Ru nanoparticles stabilized by magnetic alkali lignin amine[J]. Chemical Journal of Chinese Universities, 2020, 41(8):1826-1835. | 4 | WANG X Y, YU F L, XIE C X, et al. Highly selective hydrogenation of α-pinene in aqueous medium using PVA-stabilized Ru nanoparticles[J]. Molecular Catalysis, 2018, 444: 62-69. | 5 | KO S, CHOU T. Hydrogenation of (-)‐α‐pinene over nickel-phosphorus/aluminum oxide catalysts prepared by electroless deposition[J]. Canadian Journal of Chemical Engineering, 1994, 72(5): 862-873. | 6 | YANG Y, LIU X, YIN D, et al. A recyclable Pd colloidal catalyst for liquid phase hydrogenation of α-pinene[J]. Journal of Industrial and Engineering Chemistry, 2015, 26: 333-334. | 7 | SELKA A, LEVESQUE N A, FOUCHE D, et al. A comparative study of solvent-free and highly efficient pinene hydrogenation over Pd on carbon, alumina, and silica supports[J]. Organic Process Research & Development, 2017, 21(1): 60-64. | 8 | 鞠江月, 王亚明, 蒋丽红, 等. NiCoB/TiO2非晶态合金催化松节油加氢反应[J]. 精细化工, 2017, 34(1): 66-73. | 8 | JU Jiangyue, WANG Yaming, JIANG Lihong, et al. Hydrogenation of turpentine catalyzed by NiCoB/TiO2 amorphous alloy catalysts[J]. Fine Chemicals, 2017, 34(1): 66-73. | 9 | 韩欢, 蒋丽红, 王亚明, 等. Ni/TiO2-Al2O3催化剂的制备及其在松节油催化加氢反应中的应用[J]. 林产化学与工业,2016, 36(1): 92-98. | 9 | HAN Huan, JIANG Lihong, WANG Yaming, et al. Preparation of Ni/TiO2-Al2O3 catalyst and its application in catalyzing hydrogenation of turpentine[J]. Chemistry and Industry of Forest Products, 2016, 36(1): 92-98. | 10 | 任世彪, 邱金恒, 王春燕, 等. 镍盐前体对Ni/γ-Al2O3催化剂催化加氢活性的影响[J].催化学报, 2007, 28(7): 651-656. | 10 | REN Shibiao, QIU Jingheng, WANG Chunyan, et al. Influence of nickel salt precursors on the hydrogenation activity of Ni/γ-Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2007, 28(7): 651-656. | 11 | WEN X, SHI X, QIAO X, et al. Ligand-free nickel-catalyzed semihydrogenation of alkynes with sodium borohydride: a highly efficient and selective process for cis-alkenes under ambient conditions[J]. Chemical Communications, 2017, 53(39): 5372-5375. | 12 | BRUNEL J M. Scope, limitations and mechanistic aspects in the selective homogeneous palladium-catalyzed reduction of alkenes under transfer hydrogen conditions[J]. Tetrahedron, 2007, 63(18): 3899-3906. | 13 | BROWN H C, BROWN C A. A simple preparation of highly active platinum metal catalysts for catalytic hydrogenation[J]. Journal of the American Chemical Society, 1962, 84(8): 1494-1495. | 14 | CHUNG S. Selective reduction of mono- and disubstituted olefins by sodium borohydride and cobalt(II)[J]. Journal of Organic Chemistry, 1979, 10(29): 1014-1016. | 15 | SATYANARAYANA N, PERIASAMY M. Hydroboration or hydrogenation of alkenes with CoCl2-NaBH4[J]. Tetrahedron Letters, 1984, 25(23): 2501-2504. | 16 | SHARMA P K, KUMAR S, KUMAR P, et al. Selective reduction of mono- and disubstituted olefins by NaBH4 and catalytic RuCl3[J]. Tetrahedron Letters, 2007, 48(49): 8704-8708. | 17 | BABLER J H, WHITE N A. A convenient methodology for the chemoselective reduction of a wide variety of functionalized alkenes[J]. Tetrahedron Letters, 2010, 51(2): 439-441. | 18 | TRAN A T, HUYNH V A, FRIZ E M, et al. A general method for the rapid reduction of alkenes and alkynes using sodium borohydride, acetic acid, and palladium[J]. Tetrahedron Letters, 2009, 50(16): 1817-1819. | 19 | DE CAST RO K A, OH S, YUN J, et al. Colloidal palladium nanoparticles with in situ H2: reducing system for α, β-unsaturated carbonyl compounds[J]. Synthetic Communications, 2009, 39(19): 3509-3520. | 20 | ROUCOUX A, SCHULZ J, PATIN H. Reduced transition metal colloids: a novel family of reusable catalysts?[J]. Chemical Reviews, 2002, 102(10): 3757-3778. | 21 | DE CASTRO K A, OH S, YUN J, et al. Colloidal palladium nanoparticles with in situ H2: reducing system for α, β-unsaturated carbonyl compounds[J]. Synthetic Communications, 2009, 39(19): 3509-3520. | 22 | SHUKLA P, NANDI T, PALSINGH R. Synthesis of sorbitan ester stabilized uniform spherical silver nanoparticles[J]. Oriental Journal of Chemistry, 2016, 32(6): 2947-2955. | 23 | DESHMUKH P R, HYUN H S, SOHN Y, et al. Electroless deposition of Ni nanoparticles on micron-sized boron carbide particles: physicochemical and oxidation properties[J]. Korean Journal of Chemical Engineering, 2020, 37(3): 546-555. | 24 | WIDEGREN J A, FINKE R G. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions[J]. Journal of Molecular Catalysis A: Chemical, 2003, 198(1/2): 317-341. |
|