化工进展 ›› 2021, Vol. 40 ›› Issue (2): 1121-1129.DOI: 10.16085/j.issn.1000-6613.2020-0753
罗元1,2,3(), 谢坤1,3, 冯弋洋1,2,3, 何秋平1,3, 张克强1,3, 沈仕洲1,3, 王风1,3()
收稿日期:
2020-05-04
修回日期:
2020-06-24
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
王风
作者简介:
罗元(1995-),男,硕士研究生,研究方向为农业面源污染防治。E-mail:基金资助:
Yuan LUO1,2,3(), Kun XIE1,3, Yiyang FENG1,2,3, Qiuping HE1,3, Keqiang ZHANG1,3, Shizhou SHEN1,3, Feng WANG1,3()
Received:
2020-05-04
Revised:
2020-06-24
Online:
2021-02-05
Published:
2021-02-09
Contact:
Feng WANG
摘要:
为研发低成本的磷酸盐吸附剂,以核桃壳为原料,LaCl3为改性试剂热解制备核桃壳生物炭。通过SEM-EDS、ICP-OES、FTIR和XRD对生物炭进行表征,采用吸附等温模型和动力学模型拟合生物炭的吸磷特征,并研究热解温度、La改性浓度、添加量、初始溶液pH和共存离子对生物炭吸附磷的影响。结果表明:La改性后,生物炭表面由于负载了La2O3和LaOCl,其吸附能力明显提高。热解温度为400℃、La浸渍浓度为0.1mol/L时获得的生物炭(BC-La400),其Langmuir最大磷吸附容量为12.18mg/g,吸附过程主要受化学吸附和颗粒内扩散控制。热解温度和La改性浓度过高均不利于磷的吸附。磷初始浓度为50mg/L时,BC-La400添加量为2.7g/L可获得较理想的吸附能力,但当添加量超过4.0g/L时,磷脱除率可超过98%。BC-La400吸磷时最佳初始pH为3,CO
中图分类号:
罗元, 谢坤, 冯弋洋, 何秋平, 张克强, 沈仕洲, 王风. 镧改性核桃壳生物炭制备及吸附水体磷酸盐性能[J]. 化工进展, 2021, 40(2): 1121-1129.
Yuan LUO, Kun XIE, Yiyang FENG, Qiuping HE, Keqiang ZHANG, Shizhou SHEN, Feng WANG. Preparation of lanthanum modified walnut shell biochar and adsorption of phosphate from aqueous solutions[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1121-1129.
元素 | 质量分数/% | 原子分数/% |
---|---|---|
C | 56.47 | 78.21 |
O | 16.78 | 17.44 |
Cl | 3.28 | 1.54 |
La | 23.47 | 2.81 |
表1 BC-La400表面主要元素含量
元素 | 质量分数/% | 原子分数/% |
---|---|---|
C | 56.47 | 78.21 |
O | 16.78 | 17.44 |
Cl | 3.28 | 1.54 |
La | 23.47 | 2.81 |
准一级动力学模型 | 准二级动力学模型 | |||||
---|---|---|---|---|---|---|
k1/h-1 | qe/mg·g-1 | R2 | k2/g·mg-1·h-1 | qe/mg·g-1 | R2 | |
0.4450 | 11.04 | 0.8676 | 0.0567 | 11.94 | 0.9422 |
表2 BC-La400吸附磷的准一级和准二级动力学模型拟合参数
准一级动力学模型 | 准二级动力学模型 | |||||
---|---|---|---|---|---|---|
k1/h-1 | qe/mg·g-1 | R2 | k2/g·mg-1·h-1 | qe/mg·g-1 | R2 | |
0.4450 | 11.04 | 0.8676 | 0.0567 | 11.94 | 0.9422 |
准一级动力学模型 | 准二级动力学模型 | 准三级动力学模型 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
kd1/mg·g-1·h-1/2 | c1 | R2 | kd2/mg·g-1·h-1/2 | c2 | R2 | kd3/mg·g-1·h-1/2 | c3 | R2 | ||
5.1189 | 0.5959 | 0.9999 | 2.0320 | 3.6247 | 0.9792 | 0.7361 | 7.5810 | 0.7618 |
表3 BC-La400吸附磷的颗粒内扩散模型拟合参数
准一级动力学模型 | 准二级动力学模型 | 准三级动力学模型 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
kd1/mg·g-1·h-1/2 | c1 | R2 | kd2/mg·g-1·h-1/2 | c2 | R2 | kd3/mg·g-1·h-1/2 | c3 | R2 | ||
5.1189 | 0.5959 | 0.9999 | 2.0320 | 3.6247 | 0.9792 | 0.7361 | 7.5810 | 0.7618 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qmax/mg·g-1 | KL/L·mg-1 | R2 | n | KF/mg·g-1·L1/n·mg-1/n | R2 | |
12.18 | 16.69 | 0.9875 | 7.8095 | 9.9218 | 0.9061 |
表4 BC-La400吸附磷的等温方程拟合参数
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qmax/mg·g-1 | KL/L·mg-1 | R2 | n | KF/mg·g-1·L1/n·mg-1/n | R2 | |
12.18 | 16.69 | 0.9875 | 7.8095 | 9.9218 | 0.9061 |
吸附剂 | 热解温度 /℃ | La与原料 质量比 | 理论吸附量 /mg·g-1 | 参考 文献 |
---|---|---|---|---|
La改性稻壳生物炭 | 800 | 0.20 | 45.62 | [ |
La改性橡木生物炭 | 500 | 0.35 | 46.53 | [ |
La/Fe改性菠萝皮生物炭 | 300 | 1.39 | 101.16 | [ |
BC-La400 | 400 | 0.07 | 12.18 | 本研究 |
La改性膨润土 | Nd | Nd | 10.19 | [ |
La/Al改性蒙脱石 | Nd | Nd | 13.02 | [ |
La改性刺柏纤维素 | Nd | 0.83 | 10.89 | [ |
La改性符山石 | Nd | 0.16 | 6.70 | [ |
表5 La改性吸附材料对磷的吸附容量
吸附剂 | 热解温度 /℃ | La与原料 质量比 | 理论吸附量 /mg·g-1 | 参考 文献 |
---|---|---|---|---|
La改性稻壳生物炭 | 800 | 0.20 | 45.62 | [ |
La改性橡木生物炭 | 500 | 0.35 | 46.53 | [ |
La/Fe改性菠萝皮生物炭 | 300 | 1.39 | 101.16 | [ |
BC-La400 | 400 | 0.07 | 12.18 | 本研究 |
La改性膨润土 | Nd | Nd | 10.19 | [ |
La/Al改性蒙脱石 | Nd | Nd | 13.02 | [ |
La改性刺柏纤维素 | Nd | 0.83 | 10.89 | [ |
La改性符山石 | Nd | 0.16 | 6.70 | [ |
41 | 王章鸿. 稀土添加制备生物炭及炭对氮、磷吸附性能的研究[D]. 成都: 四川农业大学, 2015. |
WANG Zhanghong. Production of rare earth/biochar composite and its N&P adsorption performances[D]. Chengdu: Sichuan Agriculture University, 2015. | |
42 | KOILRAI P, SASAKI K. Selective removal of phosphate using La-porous carbon composites from aqueous solutions: batch and column studies[J]. Chemical Engineering Journal, 2017, 317: 1059-1068. |
43 | CHEN Q, QIN J, SUN P, et al. Cow dung-derived engineered biochar for reclaiming phosphate from aqueous solution and its validation as slow-release fertilizer in soil-crop system[J]. Journal of Cleaner Production, 2018, 172: 2009-2018. |
44 | ZHOU A, ZHU C, CHEN W, et al. Phosphorus recovery from water by lanthanum hydroxide embedded interpenetrating network poly(vinyl alcohol)/sodium alginate hydrogel beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 237-244. |
45 | WU Y, LI X, YANG Q, et al. Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents[J]. Journal of Environmental Management, 2019, 231: 370-379. |
46 | DAI L, WU B, TAN F, et al. Engineered hydrochar composites for phosphorus removal/recovery: Lanthanum doped hydrochar prepared by hydrothermal carbonization of lanthanum pretreated rice straw[J]. Bioresource Technology, 2014, 161:327-332. |
47 | FU H, YANG Y, ZHU R, et al. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite[J]. Journal of Colloid and Interface Science, 2018, 530: 704-713. |
1 | KUMAR P S, KORVING L, LOOSDRECHT M C M VAN, et al. Adsorption as a technology to achieve ultra-low concentrations of phosphate: research gaps and economic analysis[J]. Water Research X, 2019, 4: 100029. |
2 | 王荣, 贺峰, 徐栋, 等. 人工湿地基质除磷机理及影响因素研究[J]. 环境科学与技术, 2010, 33(S1): 12-18. |
WANG Rong, HE Feng, XU Dong, et al. Studies on the mechanisms and influencing factors of substrates in constructed wetlands removing phosphorus [J]. Environmental Science & Technology, 2010, 33(S1): 12-18. | |
3 | 王彤彤, 崔庆亮, 王丽丽, 等. Al改性柠条生物炭对P的吸附特性及其机制[J]. 中国环境科学, 2018, 38(6): 2210-2222. |
48 | RASHID M, PRICE N T, GRACIA P M A, et al. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles[J]. Water Research, 2017, 123: 353-360. |
3 | WANG Tongtong, CUI Qingliang, WANG Lili, et al. Adsorption characteristics and mechanism of phosphate from aqueous solutions on Al modification biochar produced from Caragana Korshinskii[J]. China Environmental Science, 2018, 38(6): 2210-2222. |
4 | YAGHOOBI-RAHNI S, REZAEI B, MIRGHAFFARI N. Bentonite surface modification and characterization for high selective phosphate adsorption from aqueous media and its application for wastewater treatments[J]. Journal of Water Reuse and Desalination, 2017, 7(2): 175-186. |
5 | YIN Q, ZHANG B, WANG R, et al. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review[J]. Environmental Science and Pollution Research, 2017, 24(34): 26297-26309. |
6 | CHEN W, MENG J, HAN X, et al. Past, present, and future of biochar[J]. Biochar, 2019, 1(1): 75-87. |
7 | YAO Y, GAO B, INYANG M, et al. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings[J]. Journal of Hazardous Materials, 2011, 190(1/3): 501-507. |
8 | TAN X, LIU Y, ZENG G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85. |
9 | NOVAIS S V, ZENERO M D O, TRONYO J, et al. Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption[J]. Journal of Environmental Management, 2018, 214: 36-44. |
10 | YAO Y, GAO B, ZHANG M, et al. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil[J]. Chemosphere, 2012, 89(11): 1467-1471. |
11 | PINTO M D C E, SILVA D D DA, GOMES A L A, et al. Biochar from carrot residues chemically modified with magnesium for removing phosphorus from aqueous solution[J]. Journal of Cleaner Production, 2019, 222: 36-46. |
12 | 易蔓, 李婷婷, 李海红, 等. Ca/Mg负载改性沼渣生物炭对水中磷的吸附特性[J]. 环境科学, 2019, 40(3): 1318-1327. |
YI Man, LI Tingting, LI Haihong, et al. Characteristics of phosphorus adsorption in aqueous solution by Ca/Mg loaded biogas residue biochar[J]. Environmental Science, 2019, 40(3): 1318-1327. | |
13 | CCPETTI D, FINSTERLE K, MARZIALI L, et al. Eutrophication management in surface waters using lanthanum modified bentonite: a review[J]. Water Research, 2016, 97: 162-174. |
14 | D’HAESE P C, DOUGLAS G, VERHULST A, et al. Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium[J]. Chemosphere, 2019, 220: 286-299. |
15 | 罗元, 谢坤, 张克强, 等. 镧(La)改性吸附材料脱除水体磷酸盐研究进展[J]. 化工进展, 2019, 38(11): 5005-5014. |
LUO Yuan, XIE Kun, ZHANG Keqiang, et al. Research progress on removal phosphate in aqueous solution by lanthanum modified adsorption materials[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5005-5014. | |
16 | CUI W, KAMRAN M, SONG Q, et al. Lanthanum chloride improves maize grain yield by promoting photosynthetic characteristics, antioxidants enzymes and endogenous hormone at reproductive stages[J]. Journal of Rare Earths, 2019, 37(7): 781-790. |
17 | 张有林, 原双进, 王小纪, 等. 基于中国核桃发展战略的核桃加工业的分析与思考[J]. 农业工程学报, 2015, 31(21): 1-8. |
ZHANG Youlin, YUAN Shuangjin, WANG Xiaofei, et al. Analysis and reflection on development strategy of walnut processing industry in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 1-8. | |
18 | YU Y, AN Q, ZHOU Y, et al. Highly synergistic effects on ammonium removal by the co-system of Pseudomonas stutzeri XL-2 and modified walnut shell biochar[J]. Bioresource Technology, 2019, 280: 239-246. |
19 | 张静雪, 梁晓怿, 贾倩. 核桃壳基活性炭的制备及其在超级电容器中的应用[J]. 现代化工, 2020, 40(1): 180-184. |
ZHANG Jingxue, LIANG Xiaoyi, JIA Qian. Preparation of walnut shell-based activated carbon and its application in supercapacitor[J]. Modern Chemical Industry, 2020, 40(1): 180-184. | |
20 | 赵阳, 高建民, 郝新敏, 等. 基于KOH活化法的核桃壳基活性炭制备及其表征[J]. 安全与环境学报, 2016, 16(2): 262-266. |
ZHAO Yang, GAO Jianmin, HAO Xinmin, et al. Preparation and characterization of the carbon purified from the walnut shells activated chemically with KOH[J]. Journal of Safety and Environment, 2016, 16(2): 262-266. | |
21 | YAO Y, GAO B, INYANG M, et al. Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential[J]. Bioresource Technology, 2011, 102(10): 6273-6278. |
22 | 宋小宝, 何世颖, 冯彦房, 等. 载镧磁性水热生物炭的制备及其除磷性能[J]. 环境科学, 2020, 41(2): 773-783. |
SONG Xiaobao, HE Shiyan, FENG Yanfang, et al. Fabrication of La-MHTC composites for phosphate removal: adsorption behavior and mechanism[J]. Environmental Science, 2020, 41(2): 773-783. | |
23 | WANG Z, ZHENG H, LUO Y, et al. Characterization and influence of biochars on nitrous oxide emission from agricultural soil[J]. Environmental Pollution, 2013, 174: 289-296. |
24 | MCDEVITT N T, BAUN W L. Infrared absorption study of metal oxides in the low frequency region (700-240cm-1)[J]. Spectrochimica Acta, 1964, 20(5): 799-808. |
25 | LI R, WANG J J, ZHOU B, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute[J]. Bioresource Technology, 2016, 215: 209-214. |
26 | YANG Q, WANG X, LUO W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge[J]. Bioresource Technology, 2018, 247: 537-544. |
27 | 马锋锋, 赵保卫, 钟金魁, 等. 牛粪生物炭对磷的吸附特性及其影响因素研究[J]. 中国环境科学, 2015, 35(4): 1156-1163. |
MA Fengfeng, ZHAO Baowei, ZHONG Jinkui, et al. Characteristics phosphate adsorption onto biochars derived from dairy manure and its influencing factors[J]. China Environmental Science, 2015, 35(4): 1156-1163. | |
28 | 王彤彤, 马江波, 曲东, 等. 两种木材生物炭对铜离子的吸附特性及其机制[J]. 环境科学, 2017, 38(5): 2161-2171. |
WANG Tongtong, MA Jiangbo, QU Dong, et al. Characteristics and mechanism of copper adsorption from aqueous solutions on biochar produced from sawdust and apple branch[J]. Environmental Science, 2017, 38(5): 2161-2171. | |
29 | GU W, LI X, XING M, et al. Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III)[J]. Science of the Total Environment, 2018, 619/620: 42-48. |
30 | HUANG W, LI D, LIU Z, et al. Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents[J]. Chemical Engineering Journal, 2014, 236:191-201. |
31 | ZHOU J, YANG S, YU J, et al. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water[J]. Journal of Hazardous Materials, 2011, 192: 1114-1121. |
32 | LIU X, SHEN F, SMITH R L JR, et al. Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions[J]. Bioresour Technology, 2019, 294: 122198. |
33 | 付军, 范芳, 李海宁, 等. 铁锰复合氧化物/壳聚糖珠: 一种环境友好型除磷吸附剂[J]. 环境科学, 2016, 37(12): 4882-4890. |
FU Jun, FAN Fang, LI Haining, et al. Fe-Mn binary oxide impregnated chitosan bead (FMCB): an environmental friendly sorbent for phosphate removal[J]. Environmental Science, 2016, 37(12): 4882-4890. | |
34 | TANG Q, SHI C, SHI W, et al. Preferable phosphate removal by nano-La (Ⅲ) hydroxides modified mesoporous rice husk biochars: role of the host pore structure and point of zero charge[J]. Science of the Total Environment, 2019, 662: 511-520. |
35 | WANG Z, GUO H, SHEN F, et al. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-)[J]. Chemosphere, 2015, 119: 646-653. |
36 | LIAO T, LI T, SU X, et al. La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal[J]. Bioresource Technology, 2018, 263: 207-213. |
37 | HAGHSERESHT F, WANG S, DO D D. A novel lanthanum-modified bentonite, phoslock, for phosphate removal from wastewaters[J]. Applied Clay Science, 2009, 46(4): 369-375. |
38 | TIAN S, JIANG P, NING P, et al. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite[J]. Chemical Engineering Journal, 2009, 151(1/2/3): 141-148. |
39 | SHIN E W, KARTHIKEYYAN K G, TSHABALALA M A. Orthophosphate sorption onto lanthanum-treated lignocellulosic sorbents[J]. Environmental Science & Technology, 2005, 39(16): 6273-6279. |
40 | LI H, RU J, YIN W, et al. Removal of phosphate from polluted water by lanthanum doped vesuvianite [J]. Journal of Hazardous Materials, 2009, 168(1): 326-330. |
[1] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[5] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[6] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[7] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[8] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[9] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[10] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[11] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[15] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |