1 | CHEN Y F, GE X L, CHEN H, et al. Seasonal light absorption properties of water-soluble brown carbon in atmospheric ?ne particles in Nanjing, China[J]. Atmospheric Environment, 2018, 187: 230-240. | 2 | 郭松, 胡敏, 尚冬杰, 等. 基于外场观测的大气二次有机气溶胶研究[J]. 化学学报, 2014, 72(2): 145-157. | 2 | GUO S, HU M, SHANG D J, et al. Research on secondary organic aerosols basing on field measurement[J]. Acta Chimica Sinica, 2014, 72(2): 145-157. | 3 | YU L, SMITH J D, LASKIN A, et al. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical[J]. Atmospheric Chemistry and Physics, 2014, 14(24): 13801-13816. | 4 | GE X L, ZHANG Q, SUN Y L, et al. Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime[J]. Environmental Chemistry, 2012, 9(3): 221-235. | 5 | 祁骞, 周学华, 王文兴. 二次有机气溶胶的水相形成研究[J]. 化学进展, 2014, 26(2/3): 458-466. | 5 | QI Q, ZHOU X H, WANG W X. Study on the formation of the aqueous phase of the secondary organic aerosols[J]. Progress in Chemistry, 2014, 26(2/3): 458-466. | 6 | MCNEILL V F. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols[J]. Environmental Science & Technology, 2015, 49(3): 1237-1244. | 7 | 叶招莲, 瞿珍秀, 马帅帅, 等. 气溶胶水相反应生成二次有机气溶胶研究进展[J]. 环境科学, 2018, 39(8): 491-501. | 7 | YE Z L, QU Z X, MA S S, et al. Progress in the formation of secondary organic aerosols by the reaction of aerosol water[J]. Environmental Science, 2018, 39(8): 491-501. | 8 | 庄雨, 陈彦彤, 李旭东, 等. 四乙基愈创木酚液相·OH氧化SOA产率及特征分析:初始浓度的影响[J]. 环境科学, 2020, 41(1): 147-155. | 8 | ZHUANG Y, CHEN Y T, LI X D, et al. Secondary organic aerosol mass yield and characteristics from 4-ethylguaiacol aqueous ·OH oxidation: effects of initial concentration[J]. Environmental Science, 2020, 41(1): 147-155. | 9 | YE Z L, ZHUANG Y, CHEN Y T, et al. Aqueous-phase oxidation of three phenolic compounds by hydroxyl radical: insight into secondary organic aerosol formation yields, mechanisms, products and optical properties[J]. Atmospheric Environment, 2020, 223: 117240-117252. | 10 | FELBER T, SCHAEFER T, HERRMANN H. OH-Initiated oxidation of imidazoles in tropospheric aqueous-phase chemistry[J]. Physical Chemistry A, 2019, 123: 1505-1513. | 11 | MOONSHINE M, RUDICH Y, KATSMAN S, et al. Atmospheric HULIS enhance pollutant degradation by promoting the dark Fenton reaction[J]. Geophysical Research Letters, 2008, 35(20): L20807. | 12 | LU J C, GE X L, LIU Y, et al. Significant secondary organic aerosol production from aqueous-phase processing of two intermediate volatility organic compounds[J]. Atmospheric Environment, 2019, 211: 63-68. | 13 | ANASTASIO C, MCGREGOR K G. Chemistry of fog waters in California's central valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen[J]. Atmospheric Environment, 2001, 35(6): 1079-1089. | 14 | VIONE D, MAURINO V, MINERO C, et al. Photochemical reactions in the tropospheric aqueous phase and on particulate matter[J]. Chemical Society Reviews, 2006, 35(5): 441-453. | 15 | YE Z L, QU Z X, MA S S, et al. A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol[J]. Science of the Total Environment, 2019, 685: 976-985. | 16 | ARNOLD W A. One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter[J]. Environmental Science Processes and Impacts, 2014, 16: 832-838. | 17 | SMITH J D, SIO V, YU L, et al. Secondary organic aerosol production from aqueous reactions of atmospheric phenols with an organic triplet excited state[J]. Environmental Science & Technology, 2014, 48(2): 1049-1057. | 18 | SMITH J D, KINNEY H, ANASTASIO C. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol[J]. Physical Chemistry Chemical Physics, 2015, 17(15): 10227-10237. | 19 | KAUR R, HUDSON B M, DRAPER J, et al. Aqueous reactions of organic triplet excited states with atmospheric alkenes[J]. Atmospheric Chemistry and Physics, 2019, 19: 5021-5032. | 20 | KAUR R, ANASTASIO C. First measurements of organic triplet excited states in atmospheric waters [J]. Environmental Science & Technology, 2018, 52(9): 5218-5226. | 21 | KAUR R, LABINS J R, HELBOCK S S, et al. Photooxidants from brown carbon and other chromophores in illuminated particle extracts[J]. Atmospheric Chemistry and Physics, 2019, 19(9): 6579-6594. | 22 | CHEN H, GE X L, YE Z L. Aqueous-phase secondary organic aerosol formation via reactions with organic triplet excited states-a short review[J]. Current Pollution Reports, 2018, 4(1): 8-12. | 23 | WANG X K, GEMAYEI R, HAYECK N, et al. Atmospheric photosensitization: a new pathway for sulfate formation[J]. Environmental Science and Technology, 2020, 54(6): 3114-3120. | 24 | ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution[J]. Environmental Science and Technology, 2018, 52: 10391-10399. | 25 | PORTER G, WINDSOR M W. The triplet state in fluid media[C]//Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1958, 245(1241): 238-258. | 26 | 方雪慧, 黄蓉, 路娟娟, 等. 水相中苯酚光催化降解的全额光子效率[J]. 环境科学研究, 2016, 29(1): 99-106. | 26 | FANG X H, HUANG R, LU J J, et al. Full photon efficiency of photocatalytic degradation of phenol in aqueous phase[J]. Environmental Scientific Research, 2016, 29(1): 99-106. | 27 | 伍晚花, 郭颂, 赵建章. 三重态-三重态湮灭上转换的研究进展[J]. 中国科学: 化学, 2012, 42(10): 1381-1398. | 27 | WU W H, GUO S, ZHAO J Z. Progress in the transformation of the triplet-triplet annihilation[J]. Chinese Science: Chemistry, 2012, 42(10): 1381-1398. | 28 | SINGH-RACHFORD T N, CASTELLANO F N. Low power visible-to-UV up conversion[J]. The Journal of Physical Chemistry A, 2009, 113(20): 5912-5917. | 29 | CHEN H C, HUNG C Y, WANG K H, et al. White-light emission from an upconverted emission with an organic triplet sensitizer[J]. Chemical Communications, 2009, 27: 4064-4066. | 30 | MCCABE A J, ARNOLD W A. Reactivity of triplet excited states of dissolved natural organic matter in stormflow from mixed-use watersheds[J]. Environmental Science & Technology, 2017, 51(17): 9718-9728. | 31 | JI H F, SHEN L. Triplet excited state characters and photosensitization mechanisms of α-terthienyl: a theoretical study[J]. Journal of Photochemistry and Photobiology B: Biology, 2009, 94(1): 51-53. | 32 | ANASTASIO C, FAUST B C, RAO C J. Aromatic carbonyl compounds as aqueous-phase photochemical sources of hydrogen peroxide in acidic sulfate aerosols, fogs, and clouds. 1. Non-phenolic methoxybenzaldehydes and methoxyacetophenones with reductants (phenols)[J]. Environmental Science & Technology,1997, 31(1): 218-232. | 33 | ALEGR??A A E, FERRER A, SANTIAGO G, et al. Photochemistry of water-soluble quinones. Production of the hydroxyl radical, singlet oxygen and the superoxide ion[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 127(1/2/3): 57-65. | 34 | FEILBERG A, NIELSEN T. Effect of aerosol chemical composition on the photodegradation of nitro-polycyclic aromatic hydrocarbons[J]. Environmental Science & Technology, 2000, 34(5): 789-797. | 35 | ZHANG D N, YAN S W, SONG W H. Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter[J]. Environmental Science & Technology, 2014, 48(21): 12645-12653. | 36 | DALRYMPLE R M, CARFAGNO A K, SHARPLESS C M. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide[J]. Environmental Science & Technology, 2010, 44(15): 5824-5829. | 37 | ERICKSON P R, WALPEN N, GUERARD J J, et al. Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution[J]. The Journal of Physical Chemistry A, 2015, 119 (13): 3233-3243. | 38 | VECCHIO R DEI, BIOUGH N V. On the origin of the optical properties of humic substances[J]. Environmental Science & Technology, 2004, 38(14): 3885-3891. | 39 | CANONICA S, JANS U, STEMMLER K, et al. Transformation kinetics of phenols in water: photosensitization by dissolved natural organic material and aromatic ketones[J]. Environmental Science & Technology, 1995, 29(7): 1822-1831. | 40 | LIU Y, LU J C, CHEN Y F, et al. Aqueous-phase production of secondary organic aerosols from oxidation of dibenzothiophene (DBT)[J]. Atmosphere, 2020, 11: 151-164. | 41 | CANONICA S, HELLRUNG B, WIRZ J. Oxidation of phenols by triplet aromatic ketones in aqueous solution[J]. The Journal of Physical Chemistry A, 2000, 104(6): 1226-1232. | 42 | YE Z L, LI Q, MA S S, et al. Summertime day-night differences of PM2.5 components (Inorganic ions, OC, EC, WSOC, WSON, HULIS, and PAHs) in Changzhou, China[J]. Atmosphere, 2017, 8(10): 189. | 43 | 顾远, 李清, 黄雯倩, 等. 常州市冬季PM2.5中类腐殖质昼夜特征分析[J]. 环境科学, 2019, 40(3): 1091-1100. | 43 | GU Y, LI Q, HUANG W Q, et al. Analysis of diurnal characteristics of humus in winter PM2.5 in Changzhou city[J]. Environmental Science, 2019, 40(3): 1091-1100. | 44 | TSUI W G, MCNEILL V F. Modeling secondary organic aerosol production from photosensitized humic-like substances (HULIS)[J]. Environmental Science & Technology Letters, 2018, 5(5): 255-259. | 45 | MONGE M E, ROSEN?RN T, FAVEZ O, et al. Alternative pathway for atmospheric particles growth[J]. Proceedings of the National Academy of Sciences, 2012, 109(18): 6840-6844. | 46 | ZEPP R G, SCHLOTZHAUER P F, SINK R M. Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances[J]. Environmental Science & Technology, 1985, 19(1): 74-81. | 47 | HALLADJA S, HALLE A TER, AGUER J P, et al. Inhibition of humic substances mediated photooxygenation of furfuryl alcohol by 2,4,6-trimethylphenol. Evidence for reactivity of the phenol with humic triplet excited states[J]. Environmental Science & Technology, 2007, 41(17): 6066-73. | 48 | WERNER J J, MCNEILL K, ARNOLD W A. Environmental photodegradation of mefenamic acid[J]. Chemosphere, 2005, 58(10): 1339-1346. | 49 | RENARD P, REED HARRIS A E, RAPF R J, et al. Aqueous phase oligomerization of methyl vinyl ketone by atmospheric radical reactions[J]. The Journal of Physical Chemistry C, 2014, 118(50): 29421-29430. | 50 | GUZMáN M I, COLUSSI A J, HOFFMANN M R. Photoinduced oligomerization of aqueous pyruvic acid[J]. The Journal of Physical Chemistry A, 2006, 110(10): 3619-3626. | 51 | EUGENE A J, XIA S S, GUZMAN M I. Aqueous photochemistry of glyoxylic acid[J]. The Journal of Physical Chemistry A, 2016, 120(21): 3817-3826. | 52 | RICHARDS-HENDERSON N K, PHAM A T, KIRK B B, et al. Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen[J]. Environmental Science & Technology, 2015, 49(1): 268-276. | 53 | GRGI? I, NIETO-GLIGOROVSKI L I, Net S, et al. Light induced multiphase chemistry of gas-phase ozone on aqueous pyruvic and oxalic acids[J]. Physical Chemistry Chemical Physics, 2010, 12(3): 698-707. | 54 | ROSSIGNOL S, AREGAHEGN K Z, TINEL L, et al. Glyoxal induced atmospheric photosensitized chemistry leading to organic aerosol growth[J]. Environmental Science & Technology, 2014, 48(6): 3218-3227. | 55 | AREGAHEGN K Z, NOZIèRE B, GEORGE C. Organic aerosol formation photo-enhanced by the formation of secondary photosensitizers in aerosols[J]. Faraday Discussions, 2013, 165: 123-134. | 56 | MONGE M E, D' ANNA B, MAZRI L, et al. Light changes the atmospheric reactivity of soot[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6605-6609. | 57 | REMUCAL C K. The role of indirect photochemical degradation in the environmental fate of pesticides: a review[J]. Environmental Science: Processes & Impacts, 2014, 16: 628-653. | 58 | BAXTER R M, CAREY J H. Evidence for photochemical generation of superoxide ion in humic waters[J]. Nature, 1983, 306(5943): 575-576. | 59 | CHEN Z Y, ANASTASIO C. Concentrations of a triplet excited state are enhanced in illuminated ice[J]. Environmental Science: Processes & Impacts, 2017, 19(1): 12-21. | 60 | GRANNAS A M, JONES A E, DIBB J, et al. An overview of snow photochemistry: evidence, mechanisms and impacts[J]. Atmospheric Chemistry and Physics, 2007, 7(2): 4329-4373. | 61 | SHARPLESS C M. Lifetimes of triplet dissolved natural organic matter (DOM) and the effect of NaBH4 reduction on singlet oxygen quantum yields: implications for DOM photophysics[J]. Environmental Science and Technology, 2012, 46(8): 4466-4473. | 62 | PFLUG N C, SCHMITT M, MCNEILL K. Development of N?cyclopropylanilines to probe the oxidative properties of triplet-state photosensitizers[J]. Environmental Science and Technology, 2019, 53: 4813-4822. | 63 | FISCHER A M, KLIGER D S, WINTERLE J S, et al. Direct observation of phototransients in natural waters[J]. Chemosphere, 1985, 14(9): 1299-1306. | 64 | WENK J, EUSTIS S N, MCNEILL K, et al. Quenching of excited triplet states by dissolved natural organic matter[J]. Environmental Science & Technology, 2013, 47(22): 12802-12810. | 65 | FRLMMEL F H, BAUER H, PUTZLEN J, et al. Laser flash photolysis of dissolved aquatic humic material and the sensitized production of singlet oxygen[J]. Environmental Science and Technology, 1987, 21(6): 541-545. | 66 | CHAIKOVSKAYA O N, LEVIN P P, SUL'TIMOVA N B, et al. Triplet states of humic acids studied by laser flash photolysis using different excitation wavelengths[J]. Russian Chemical Bulletin, 2004, 53(2): 313-317. | 67 | ROSARIO-ORTIZ F L, CANONICA S. Probe compounds to assess the photochemical activity of dissolved organic matter[J]. Environmental Science and Technology, 2016, 50(23): 12532-12547. | 68 | KAUR R, ANASTASIO C. Light absorption and the photoformation of hydroxyl radical and singlet oxygen in fog waters[J]. Atmospheric Environment., 2017, 164: 387-397. | 69 | GREBEL J E, PIGNATELLO J J, MITCH W A. Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds[J]. Water Research, 2011, 45(19): 6535-6544. | 70 | ALBINET A, MINERO C, VIONE D. Photochemical generation of reactive species upon irradiation of rainwater: negligible photoactivity of dissolved organic matter[J]. Science of the Total Environment, 2010, 408 (16): 3367-3373. | 71 | SAVCHENKOVA A S, SEMENIKHIN A S, CHECHET I V. Mechanism and rate constants of the CH2+CH2CO reactions in triplet and singlet states: a theoretical study[J]. Journal of Computational Chemistry, 2019, 40: 387-399. | 72 | LI Y J, WEI X X, CHEN J W, et al. Photodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: a case of sulfadiazine with 4-carboxybenzophenone as a proxy[J]. Journal of Hazardous Materials, 2015, 290: 9-15. | 73 | LI Y J, CHEN J W, QIAO X L. Insights into photolytic mechanism of sulfapyridine induced by triplet-excited dissolved organic matter[J]. Chemosphere, 2016, 147: 305-310. | 74 | ZENG T, ARNOLD W A. Pesticide photolysis in prairie potholes: probing photosensitized processes[J]. Environmental Science & Technology, 2013, 47(13): 6735-6745. | 75 | KELLY M M, ARNOLD W A. Direct and indirect photolysis of the phytoestrogens genistein and daidzein[J]. Environmental Science & Technology, 2012, 46(10): 5396-5403. | 76 | WENK J, GUNTEN U VON, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical[J]. Environmental Science & Technology, 2011, 45(4): 1334-1340. | 77 | ROSADO-LAUSELL S L, WANG H T, GUTIéRREZ L, et al. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation[J]. Water Research, 2013, 47(14): 4869-4879. | 78 | CUI S S, YIN D Y, CHEN Y Q, et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct[J]. American Chemical Society, 2013, 7(1): 676-688. | 79 | ZHENG G, CHEN J, STEFFLOVA K, et al. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation[J]. Proceedings of the National Academy of Sciences, 2007, 104(21): 8989-8994. | 80 | PHILLIPS D. Light relief: photochemistry and medicine[J]. Photochemical & Photobiological Sciences, 2010, 9(12): 1589-1596. | 81 | SCH?ERLING M. The art of fluorescence imaging with chemical sensors[J]. Angewandte Chemie International Edition, 2012, 51(15): 3532-3554. | 82 | CIRIMINNA R, PAGLIARO M. Organofluoro-silica xerogels as high-performance optical oxygen sensors[J]. The Analyst, 2009, 134(8): 1531-1535. | 83 | O'CONNOR A E, GALLAGHER W M, BYRNE A T. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy[J]. Photochemistry and Photobiology, 2009, 85(5): 1053-1074. | 84 | WU W H, WU W T, JI S M, et al. Tuning the emission properties of cyclometalated platinum (Ⅱ) complexes by intramolecular electron-sink/arylethynylated ligands and its application for enhanced luminescent oxygen sensing[J]. Journal of Materials Chemistry, 2010, 20(43): 9775-9786. |
|