化工进展 ›› 2021, Vol. 40 ›› Issue (2): 1085-1096.DOI: 10.16085/j.issn.1000-6613.2020-0700
收稿日期:
2020-04-28
修回日期:
2020-06-01
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
韩文亮
作者简介:
韩文亮(1980—),男,博士,讲师,研究方向为环境污染及其防治。E-mail:基金资助:
Received:
2020-04-28
Revised:
2020-06-01
Online:
2021-02-05
Published:
2021-02-09
Contact:
Wenliang HAN
摘要:
为了解城市水源水库沉积物中总有机碳(TOC)和黑碳(BC)的时空分异及其对典型持久性有机污染物(POPs)——多溴二苯醚(PBDEs)的影响,本文分析了泉州山美水库及入库河流沉积物中TOC和BC的含量、赋存总量、空间分布、水文期变化、BC和TOC的关系及两者对PBDEs时空分异的影响。结果表明:TOC和BC含量分别为15.08mg/g±2.70mg/g(10.87~19.61mg/g)和3.55mg/g±1.14mg/g(2.08~6.92mg/g),赋存总量分别为107445t和25294t,较国内外其他湖库处于中低水平。TOC和BC的时空分异规律存在差异,TOC主要受水文期变化的显著影响(P<0.001),而BC则受空间分布的显著影响(P=0.001)。TOC与BC无显著相关性(P≥0.226),显示两者来源不同,TOC较BC更易受到入库河流输入的影响。山美水库各水文期BC/TOC(丰水0.24±0.09、枯水0.21±0.06、平水0.27±0.08)均介于0.11~0.5,显示其BC为生物质燃烧和部分化石燃料燃烧的复合来源。入库河流BC受生物质燃烧源的影响大于库区。ΣPBDEs、Deca-BDE和Nona-BDE的时空分异受到了TOC的显著影响,且Deca-BDE降解产生的主要低溴BDE的时空分异也受到了TOC不同程度的影响。各水文期TOC和PBDEs的主要污染源相同,均为入库河流,且二者空间分布规律大致相同,TOC是PBDEs时空分异的重要控制因素。各水文期BC与PBDEs因来源不同而均无显著相关性,但BC可大量吸附固定局地污染源释放的PBDEs,对其时空分异仍有重要影响。
中图分类号:
韩文亮, 刘豫. 城市水源水库及入库河流沉积物中总有机碳和黑碳的时空分异及其对多溴二苯醚的影响[J]. 化工进展, 2021, 40(2): 1085-1096.
Wenliang HAN, Yu LIU. Spatiotemporal differentiation of total organic carbon and black carbon in sediments of urban water source reservoir and its inflowing river: impacts on polybrominated diphenyl ethers[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1085-1096.
项目 | Pearson 相关系数 | P | Spearman 相关系数 | P |
---|---|---|---|---|
入库河流 | -0.566 | 0.320 | -0.500 | 0.391 |
水库总体 | 0.222 | 0.276 | 0.196 | 0.338 |
水库丰水期 | -0.054 | 0.899 | -0.310 | 0.456 |
水库枯水期 | 0.449 | 0.226 | 0.533 | 0.139 |
水库平水期 | -0.113 | 0.772 | -0.133 | 0.732 |
表1 山美水库及入库河流沉积物中TOC与BC的相关系数
项目 | Pearson 相关系数 | P | Spearman 相关系数 | P |
---|---|---|---|---|
入库河流 | -0.566 | 0.320 | -0.500 | 0.391 |
水库总体 | 0.222 | 0.276 | 0.196 | 0.338 |
水库丰水期 | -0.054 | 0.899 | -0.310 | 0.456 |
水库枯水期 | 0.449 | 0.226 | 0.533 | 0.139 |
水库平水期 | -0.113 | 0.772 | -0.133 | 0.732 |
项目 | 水文期 | 入库区 | 库尾区 | 库中区 | 坝前区 |
---|---|---|---|---|---|
TOC/mg?g-1 | 丰水期 | 19.08 | 15.15 | 17.48 | 14.08 |
枯水期 | 16.26 | 15.96 | 15.34 | 16.77 | |
平水期 | 13.55 | 10.92 | 12.56 | 13.24 | |
BC/mg?g-1 | 丰水期 | 3.25 | 3.33 | 4.72 | 4.58 |
枯水期 | 3.08 | 2.97 | 3.72 | 3.80 | |
平水期 | 3.30 | 3.13 | 3.39 | 3.30 | |
ΣPBDEs/ng?g-1 | 丰水期 | 538.19 | 104.47 | 192.66 | 27.51 |
枯水期 | 378.12 | 166.40 | 77.62 | 165.28 | |
平水期 | 498.03 | 123.76 | 607.29 | 175.11 |
表2 山美水库各水文期沉积物中TOC、BC和ΣPBDEs的含量
项目 | 水文期 | 入库区 | 库尾区 | 库中区 | 坝前区 |
---|---|---|---|---|---|
TOC/mg?g-1 | 丰水期 | 19.08 | 15.15 | 17.48 | 14.08 |
枯水期 | 16.26 | 15.96 | 15.34 | 16.77 | |
平水期 | 13.55 | 10.92 | 12.56 | 13.24 | |
BC/mg?g-1 | 丰水期 | 3.25 | 3.33 | 4.72 | 4.58 |
枯水期 | 3.08 | 2.97 | 3.72 | 3.80 | |
平水期 | 3.30 | 3.13 | 3.39 | 3.30 | |
ΣPBDEs/ng?g-1 | 丰水期 | 538.19 | 104.47 | 192.66 | 27.51 |
枯水期 | 378.12 | 166.40 | 77.62 | 165.28 | |
平水期 | 498.03 | 123.76 | 607.29 | 175.11 |
BDE | TOC | BC | ||||
---|---|---|---|---|---|---|
丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | |
Tri-BDE | -0.292 | 0.207 | 0.409 | -0.368 | -0.105 | 0.457 |
P | 0.483 | 0.594 | 0.274 | 0.369 | 0.787 | 0.217 |
Tetra-BDE | 0.731① | 0.247 | 0.455 | -0.503 | -0.176 | 0.561 |
P | 0.039 | 0.521 | 0.219 | 0.204 | 0.650 | 0.116 |
Penta-BDE | -0.039 | 0.341 | 0.307 | -0.200 | 0.070 | 0.073 |
P | 0.927 | 0.369 | 0.422 | 0.634 | 0.857 | 0.852 |
Hexa-BDE | 0.607 | -0.037 | -0.319 | -0.601 | 0.371 | 0.099 |
P | 0.111 | 0.924 | 0.402 | 0.115 | 0.326 | 0.800 |
Hepta-BDE | 0.209 | 0.027 | -0.349 | -0.310 | 0.316 | 0.015 |
P | 0.620 | 0.945 | 0.357 | 0.455 | 0.408 | 0.969 |
Octa-BDE | 0.139 | -0.023 | 0.126 | -0.420 | 0.370 | 0.160 |
P | 0.743 | 0.953 | 0.748 | 0.301 | 0.327 | 0.680 |
Nona-BDE | 0.637 | 0.138 | 0.602 | -0.366 | -0.024 | 0.483 |
P | 0.090 | 0.722 | 0.086 | 0.373 | 0.951 | 0.187 |
Deca-BDE | 0.785① | 0.203 | 0.558 | -0.394 | -0.043 | 0.516 |
P | 0.021 | 0.601 | 0.118 | 0.335 | 0.913 | 0.155 |
ΣPBDEs | 0.784① | 0.202 | 0.558 | -0.395 | -0.040 | 0.516 |
P | 0.021 | 0.601 | 0.119 | 0.333 | 0.918 | 0.155 |
表3 山美水库沉积物中TOC、BC与PBDEs的Pearson相关系数
BDE | TOC | BC | ||||
---|---|---|---|---|---|---|
丰水期 | 枯水期 | 平水期 | 丰水期 | 枯水期 | 平水期 | |
Tri-BDE | -0.292 | 0.207 | 0.409 | -0.368 | -0.105 | 0.457 |
P | 0.483 | 0.594 | 0.274 | 0.369 | 0.787 | 0.217 |
Tetra-BDE | 0.731① | 0.247 | 0.455 | -0.503 | -0.176 | 0.561 |
P | 0.039 | 0.521 | 0.219 | 0.204 | 0.650 | 0.116 |
Penta-BDE | -0.039 | 0.341 | 0.307 | -0.200 | 0.070 | 0.073 |
P | 0.927 | 0.369 | 0.422 | 0.634 | 0.857 | 0.852 |
Hexa-BDE | 0.607 | -0.037 | -0.319 | -0.601 | 0.371 | 0.099 |
P | 0.111 | 0.924 | 0.402 | 0.115 | 0.326 | 0.800 |
Hepta-BDE | 0.209 | 0.027 | -0.349 | -0.310 | 0.316 | 0.015 |
P | 0.620 | 0.945 | 0.357 | 0.455 | 0.408 | 0.969 |
Octa-BDE | 0.139 | -0.023 | 0.126 | -0.420 | 0.370 | 0.160 |
P | 0.743 | 0.953 | 0.748 | 0.301 | 0.327 | 0.680 |
Nona-BDE | 0.637 | 0.138 | 0.602 | -0.366 | -0.024 | 0.483 |
P | 0.090 | 0.722 | 0.086 | 0.373 | 0.951 | 0.187 |
Deca-BDE | 0.785① | 0.203 | 0.558 | -0.394 | -0.043 | 0.516 |
P | 0.021 | 0.601 | 0.118 | 0.335 | 0.913 | 0.155 |
ΣPBDEs | 0.784① | 0.202 | 0.558 | -0.395 | -0.040 | 0.516 |
P | 0.021 | 0.601 | 0.119 | 0.333 | 0.918 | 0.155 |
1 | HAN Wenliang, FAN Tao, XU Binhua, et al. Passive sampling of polybrominated diphenyl ethers in indoor and outdoor air in Shanghai, China: seasonal variations, sources, and inhalation exposure[J]. Environmental Science and Pollution Research, 2016, 23(6): 5771-5781. |
2 | 韩文亮, 陈海明, 董娟娟. 电脑散热风扇灰尘中多溴二苯醚的污染特征和环境健康风险评价[J]. 环境科学学报, 2020, 40(9): 3190-3203. |
HAN Wenliang, CHEN Haiming, DONG Juanjuan. Contamination characteristics and environmental health risk assessment of polybrominated diphenyl ethers in dust from cooling fans in computers[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3190-3203. | |
3 | 韩文亮, 刘豫, 冯凯文. 泉州山美水库及入库河流沉积物中多溴二苯醚的时空分异和降解分析[J]. 环境科学, 2020, 41(10): 4525-4538. |
HAN Wenliang, LIU Yu, FENG Kaiwen. Spatiotemporal differentiation and degradation analysis of polybrominated diphenyl ethers in sediments of Shanmei Reservoir and its inflowing river, Quanzhou, China[J]. Environmental Science, 2020, 41(10): 4525-4538. | |
4 | GUO Jiehong, LI Zhuona, RANASINGHE P, et al. Halogenated flame retardants in sediments from the Upper Laurentian Great Lakes: Implications to long-range transport and evidence of long-term transformation[J]. Journal of Hazardous Materials, 2020, 384: 121346. |
5 | ALI U, MAHMOOD A, SYED J H, et al. Assessing the combined influence of TOC and black carbon in soil-air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan[J]. Environmental Pollution, 2015, 201: 131-140. |
6 | SUN Ke, ZHAO Ye, GAO Bo, et al. Organochlorine pesticides and polybrominated diphenyl ethers in irrigated soils of Beijing, China: levels, inventory and fate[J]. Chemosphere, 2009, 77(9): 1199-1205. |
7 | CHENG Bo, PENG Fengjiao, LIU Qiaorong, et al. Nationwide assessment of persistent halogenated compounds (PHCs) in farmed golden pompano of China[J]. Food Chemistry, 2020, 313: 126135. |
8 | GAYLORD A, OSBORNE G, GHASSABIAN A, et al. Trends in neurodevelopmental disability burden due to early life chemical exposure in the USA from 2001 to 2016: a population-based disease burden and cost analysis[J]. Molecular and Cellular Endocrinology, 2020, 502: 110666. |
9 | 韩文亮, 郑小燕. 十溴二苯醚及其降解产物对浮游生物的毒性[J]. 环境科学学报, 2018, 38(2): 821-828. |
HAN Wenliang, ZHENG Xiaoyan. Toxicity of decabromodiphenyl ether and its degradation products to plankton[J]. Acta Scientiae Circumstantiae, 2018, 38(2): 821-828. | |
10 | 韩文亮, 陈海明. 蒙脱石搭载纳米Ni-Fe超声降解十溴二苯醚[J]. 化工进展, 2018, 37(1): 350-358. |
HAN Wenliang, CHEN Haiming. Ultrasound enhanced degradation of decabromodiphenyl ether by montmorillonite supported Ni-Fe nanoparticles[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 350-358. | |
11 | CHEN Juan, GAO Han, WANG Peifang, et al. Effects of decabromodiphenyl ether on activity, abundance, and community composition of phosphorus mineralizing bacteria in eutrophic lake sediments[J]. Science of the Total Environment, 2019, 695: 133785. |
12 | DONG Shipei, LI Zhuolun, CHEN Qiujie, et al. Total organic carbon and its environmental significance for the surface sediments in groundwater recharged lakes from the Badain Jaran Desert, northwest China[J]. Journal of Limnology, 2018, 77(1): 121-129. |
13 | SUBDIAGA E, ORSETTI S, HADERLEIN S B. Effects of sorption on redox properties of natural organic matter[J]. Environmental Science & Technology, 2019, 53(24): 14319-14328. |
14 | LIU Rui, MA Teng, QIU Wenkai, et al. Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance[J]. Science of the Total Environment, 2020, 701: 134776. |
15 | MOON Hyo-Bang, CHOI Minkyu, YU Jun, et al. Contamination and potential sources of polybrominated diphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea[J]. Chemosphere, 2012, 88(7): 837-843. |
16 | BONE S E, CLIFF J, WEAVER K, et al. Complexation by organic matter controls uranium mobility in anoxic sediments[J]. Environmental Science & Technology, 2020, 54(3): 1493-1502. |
17 | SANTIN G, ELJARRAT E, BARCELO D. Bioavailability of classical and novel flame retardants: effect of fullerene presence[J]. Science of the Total Environment, 2016, 565: 299-305. |
18 | LIU Dan, WU Shengmin, ZHANG Qin, et al. Occurrence, spatial distribution, and ecological risks of typical hydroxylated polybrominated diphenyl ethers in surface sediments from a large freshwater lake of China[J]. Environmental Science and Pollution Research, 2017, 24(6): 5773-5780. |
19 | 李敏, 成杭新, 李括. 中国淡水湖泊沉积物地球化学背景与环境质量基准建立的思考[J]. 地学前缘, 2018, 25(4): 276-284. |
LI Min, CHENG Hangxin, LI Kuo. Geochemical background of freshwater lake sediments: a constraint on the establishment of sediment quality guidelines in China[J]. Earth Science Frontiers, 2018, 25(4): 276-284. | |
20 | LIAN Fei, XING Baoshan. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. |
21 | YU Pengfei, TOON O B, BARDEEN C G, et al. Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume[J]. Science, 2019, 365(6453): 587-590. |
22 | KLIMONT Z, KUPIAINEN K, HEYES C, et al. Global anthropogenic emissions of particulate matter including black carbon[J]. Atmospheric Chemistry and Physics, 2017, 17(14): 8681-8723. |
23 | ALI U, SWEETMAN A J, RIAZ R, et al. Sedimentary black carbon and organochlorines in Lesser Himalayan Region of Pakistan: relationship along the altitude[J]. Science of the Total Environment, 2018, 621: 1568-1580. |
24 | SÁNCHEZ-GARCÍA L, DE ANDRÉS J R, GÉLINAS Y, et al. Different pools of black carbon in sediments from the Gulf of Cádiz (SW Spain): method comparison and spatial distribution[J]. Marine Chemistry, 2013, 151: 13-22. |
25 | ALI U, BAJWA A, CHAUDHRY M J I, et al. Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan[J]. Ecotoxicology and Environmental Safety, 2016, 126: 177-185. |
26 | JIA Fang, LIAO Chunyang, XUE Jiaying, et al. Comparing different methods for assessing contaminant bioavailability during sediment remediation[J]. Science of the Total Environment, 2016, 573: 270-277. |
27 | YANG Weifeng, GUO Laodong. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves[J]. Continental Shelf Research, 2018, 155: 1-10. |
28 | YANG Yaning, SHENG Guangyao. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns[J]. Environ. Sci. Technol., 2003, 37(16): 3635-3639. |
29 | NGUYEN T H, BROWN R A, BALL W P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment[J]. Organic Geochemistry, 2004, 35(3): 217-234. |
30 | ZHU Baotong, XIA Xinghui, WU Shan, et al. Microbial bioavailability of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in natural sediments from major rivers of China[J]. Chemosphere, 2016, 153: 386-393. |
31 | BRODOWSKI S, JOHN B, FLESSA H, et al. Aggregate-occluded black carbon in soil[J]. European Journal of Soil Science, 2006, 57(4): 539-546. |
32 | BONINA S M C, CODLING G, CORCORAN M B, et al. Temporal and spatial differences in deposition of organic matter and black carbon in Lake Michigan sediments over the period 1850—2010[J]. Journal of Great Lakes Research, 2018, 44(4): 705-715. |
33 | WALKER X J, BALTZER J L, CUMMING S G, et al. Increasing wildfires threaten historic carbon sink of boreal forest soils[J]. Nature, 2019, 572(7770): 520-523. |
34 | NOVAKOV T, ANDREAE M O, GABRIEL R, et al. Origin of carbonaceous aerosols over the tropical Indian Ocean: biomass burning or fossil fuels?[J]. Geophysical Research Letters, 2000, 27(24): 4061-4064. |
35 | FANG Yin, CHEN Yingjun, TIAN Chongguo, et al. Application of PMF receptor model merging with PAHs signatures for source apportionment of black carbon in the continental shelf surface sediments of the Bohai and Yellow Seas, China[J]. Journal of Geophysical Research-Oceans, 2016, 121(2): 1346-1359. |
36 | ZHOU Peng, LIN Kuangfei, ZHOU Xiaoyu, et al. Distribution of polybrominated diphenyl ethers in the surface sediments of the Taihu Lake, China[J]. Chemosphere, 2012, 88(11): 1375-1382. |
37 | WEI Liangfu, TADESSE A W, WANG Jun. Organohalogenated contaminants (OHCs) in surface sediments and water of East Dongting Lake and Hong Lake, China[J]. Archives of Environmental Contamination and Toxicology, 2019, 76(2): 157-170. |
38 | 林田, 方引, 陈颖军, 等. 东海内陆架沉积物中黑碳分布及其与持久性有机污染物的相关性研究[J]. 环境科学, 2012, 33(7): 2335-2340. |
LIN Tian, FANG Yin, CHEN Yingjun. et al. Distribution of black carbon in the surface sediments of the East China Sea and their correlations with persistent organic pollutants[J]. Environmental Science, 2012, 33(7): 2335-2340. | |
39 | HONG Qingquan, WANG Yun, LUO Xiaojun, et al. Occurrence of polychlorinated biphenyls (PCBs) together with sediment properties in the surface sediments of the Bering Sea, Chukchi Sea and Canada Basin[J]. Chemosphere, 2012, 88(11): 1340-1345. |
40 | YU Bingsong, DONG Hailiang, JIANG Hongchen, et al. The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China[J]. Clays and Clay Minerals, 2009, 57(2): 213-226. |
41 | KANDASAMY S, LIN Baozhi, LOU Jiann-Yuh, et al. Estimation of marine versus terrigenous organic carbon in sediments off southwestern Taiwan using the bromine to total organic carbon ratio as a proxy[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(10): 3387-3402. |
42 | YANG Yaning, MAHLER B J, METRE P C VAN, et al. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6830-6840. |
43 | SULLIVAN J, BOLLINGER K, CAPRIO A, et al. Enhanced sorption of PAHs in natural-fire-impacted sediments from Oriole Lake, California[J]. Environmental Science & Technology, 2011, 45(7): 2626-2633. |
44 | CRANE J L. Source apportionment and distribution of polycyclic aromatic hydrocarbons, risk considerations, and management implications for urban stormwater pond sediments in Minnesota, USA[J]. Archives of Environmental Contamination and Toxicology, 2014, 66(2): 176-200. |
45 | BUCKLEY D R, ROCKNE K J, LI An, et al. Soot deposition in the Great Lakes: implications for semi-volatile hydrophobic organic pollutant deposition[J]. Environmental Science & Technology, 2004, 38(6): 1732-1739. |
46 | MOERMOND C T A, ZWOLSMAN J J G, KOELMANS A A. Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes[J]. Environmental Science & Technology, 2005, 39(9): 3101-3109. |
47 | MURI G, CERMELJ B, FAGANELI J, et al. Black carbon in Slovenian alpine lacustrine sediments[J]. Chemosphere, 2002, 46(8): 1225-1234. |
48 | LI Feipeng, ZHANG Haiping, MENG Xiangzhou, et al. Contamination by persistent toxic substances in surface sediment of urban rivers in Chaohu City, China[J]. Journal of Environmental Sciences, 2012, 24(11): 1934-1941. |
49 | WANG Xuetong, CHEN Lei, WANG Xikui, et al. Occurrence, profiles, and ecological risks of polybrominated diphenyl ethers (PBDEs) in river sediments of Shanghai, China[J]. Chemosphere, 2015, 133: 22-30. |
50 | RICHMAN L A, KOLIC T, MACPHERSON K, et al. Polybrominated diphenyl ethers in sediment and caged mussels (Elliptio complanata) deployed in the Niagara River[J]. Chemosphere, 2013, 92(7): 778-786. |
51 | ILYAS M, SUDARYANTO A, SETIAWAN I E, et al. Characterization of polychlorinated biphenyls and brominated flame retardants in sediments from riverine and coastal waters of Surabaya, Indonesia[J]. Marine Pollution Bulletin, 2011, 62(1): 89-98. |
52 | MA Jie, XU Xiaoguang, YU Cencen, et al. Molecular biomarkers reveal co-metabolism effect of organic detritus in eutrophic lacustrine sediments[J]. Science of the Total Environment, 2020, 698: 134328. |
53 | 福建省情网. 泉州市志[EB/OL].[2020-4-3]. . |
54 | GANDHI N, GEWURTZ S B, DROUILLARD K G, et al. Polybrominated diphenyl ethers (PBDEs) in Great Lakes fish: levels, patterns, trends and implications for human exposure[J]. Science of the Total Environment, 2017, 576: 907-916. |
55 | ZHU Xifen, ZHONG Yin, WANG Heli, et al. New insights into the anaerobic microbial degradation of decabrominated diphenyl ether (BDE-209) in coastal marine sediments[J]. Environmental Pollution, 2019, 255: 113151. |
56 | YU Yuanyuan, YIN Hua, PENG Hui, et al. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: cells viability, pathway, toxicity assessment, and microbial function prediction[J]. Science of the Total Environment, 2019, 668: 958-965. |
57 | LI Yuanyuan, LIN Tian, CHEN Yingjun, et al. Polybrominated diphenyl ethers (PBDEs) in sediments of the coastal East China Sea: occurrence, distribution and mass inventory[J]. Environmental Pollution, 2012, 171: 155-161. |
58 | TANG Zhenwu, HUANG Qifei, CHENG Jiali, et al. Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area: a neglected heavily polluted area[J]. Environmental Science & Technology, 2014, 48(3): 1508-1516. |
59 | XUE Chao, PENG Liang, TANG Jinping, et al. Screening the main factors affecting phthalate esters adsorption on soils, humic acid, and clay organo-mineral complexes[J]. Ecotoxicology and Environmental Safety, 2020, 190: 109143. |
60 | BARRETT T E, PONETTE-GONZALEZ A G, RINDY J E, et al. Wet deposition of black carbon: a synthesis[J]. Atmospheric Environment, 2019, 213: 558-567. |
61 | 王洋, 董长青. 生物质燃烧和热解中钾的释放规律研究进展[J]. 化工进展, 2020, 39(4): 1292-1301. |
WANG Yang, DONG Changqing. Release of K during biomass combustion and pyrolysis: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1292-1301. | |
62 | 王丰, 孔巧平, 周红桃, 等. 炭质吸附剂孔径分布与焦化废水有机组分分离的相关性[J]. 化工进展, 2018, 37(8): 3252-3259. |
WANG Feng, KONG Qiaoping, ZHOU Hongtao, et al. Correlation between pore-size distribution of carbonaceous sorbent and the separation of organic components in coking wastewater[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3252-3259. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[12] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[13] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[14] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[15] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |