1 | 陈宇, 纪红兵. 木质素类生物质催化热解制备精细化学品研究进展[J]. 化工进展, 2019, 38(1): 626-638. | 1 | CHEN Y, JI H B. Catalytic pyrolysis of lignin biomass for the production of fine chemicals[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 626-638. | 2 | LONG X H, SHAO H B, LIU L, et al. Jerusalem artichoke: a sustainable biomass feedstock for biorefinery[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1382-1388. | 3 | 李玲玉, 孙晓晶, 郭富金, 等. 菊芋的化学成分、生物活性及其利用研究进展[J]. 食品研究与开发, 2019, 40(16): 213-218. | 3 | LI L Y, SUN X J, GUO F J, et al. Study on the chemical and bioactive compounds and applications of Helianthus tuberosus L.[J]. Food Research and Development, 2019, 40(16): 213-218. | 4 | ZHOU L K, PANG J F, WANG A Q, et al. Catalytic conversion of Jerusalem artichoke stalk to ethylene glycol over a combined catalyst of WO3 and Raney Ni[J]. Chinese Journal of Catalysis, 2013, 34(11): 2041-2046. | 5 | SINGH R S, SINGH T, LARROCHE C. Biotechnological applications of inulin-rich feedstocks[J]. Bioresource Technology, 2019, 273: 641-653. | 6 | ZHAO C H, CUI W, LIU X Y, et al. Expression ofinulinase gene in the oleaginous yeast Yarrowialipolytica and single cell oil production from inulin-containing materials[J]. Metabolic Engineering, 2010, 12(6): 510-517. | 7 | ZHOU L K, WANG A Q, LI C Z, et al. Selective production of 1,2-propylene glycol from Jerusalem artichoke tuber using Ni-W2C/AC catalysts[J]. ChemSusChem, 2012, 5(5): 932-938. | 8 | KIM S, KIM C H. Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) for consolidated bioprocessing ethanol production[J]. Renewable Energy, 2014, 65: 83-91. | 9 | 孙丽慧, 王旭东, 戴建英, 等. Klebsiella pneumoniae发酵菊芋生产2,3-丁二醇的初步研究[J]. 过程工程学报, 2009, 9(1): 161-164. | 9 | SUN L H, WANG X D, DAI J Y, et al. Preliminary study on fermentative production of 2,3-butanediol fromJerusalem artichoke tubers by Klebsiella pneumoniae[J]. The Chinese Journal of Process Engineering, 2009, 9(1): 161-164. | 10 | SUNG M, SEO Y H, HAN S, et al. Biodiesel production from yeast Cryptococcus sp. using Jerusalem artichoke[J]. Bioresource Technology, 2014, 155: 77-83. | 11 | ZHOU L K, LI Z L, PANG J F, et al. Catalytic conversion of Jerusalem artichoke tuber into hexitols using the bifunctional catalyst Ru/(AC-SO3H)[J]. Chinese Journal of Catalysis, 2015, 36(10): 1694-1700. | 12 | 周立坤, 葛庆峰, 郑明远, 等. 泵注入方式进料催化菊芋根茎溶液制备多元醇[J]. 工业催化, 2017, 25(10): 75-82. | 12 | ZHOU L K, GE Q F, ZHENG M Y, et al. Synthesis of polyols by catalyzed hydrogenation of Jerusalem artichoke rhizome solution with pump injection way[J]. Industrial Catalysis, 2017, 25(10): 75-82. | 13 | JEONG G T. Catalytic conversion of Helianthus tuberosus L. to sugars, 5-hydroxymethylfurfural and levulinic acid using hydrothermal reaction[J]. Biomass and Bioenergy, 2015, 74: 113-121. | 14 | YANG F L, LIU Q S, YUE M, et al. Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural[J]. Chemical Communications, 2011, 47(15): 4469-4471. | 15 | FACHRI B A, ABDILLA R M, RASRENDRA C B. Experimental and modeling studies on the acid-catalyzed conversion of inulin to 5-hydroxymethylfurfural in water[J]. Chemical Engineering Research and Design, 2016, 109: 65-75. | 16 | HOLM M S, SARAVANAMURUGAN S, TAARNING E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science, 2010, 328(5978): 602-605. | 17 | TAARNING E, SARAVANAMURUGAN S, HOLM M S, et al. Zeolite-catalyzed isomerization of triose sugars[J]. ChemSusChem, 2009, 2(7): 625-627. | 18 | 刘海超, 李宇明. 生物质催化转化[J]. 工业催化, 2016, 24(6): 81-136. | 18 | LIU H C, LI Y M. Catalytic conversion of biomass[J]. Industrial Catalysis, 2016, 24(6): 81-136. | 19 | 张天祥, 丁宁, 杨春光, 等. 菊粉酶的研究进展[J]. 中国酿造, 2016, 35(11): 21-25. | 19 | ZHANG T X, DING N, YANG C G, et al. Research progress of inulinase[J]. China Brewing, 2016, 35(11): 21-25. | 20 | 赵志福, 朱宏吉, 于津津, 等. 菊粉生产新技术研究进展[J]. 化工进展, 2008, 27(10): 1522-1532. | 20 | ZHAO Z F, ZHU H J, YU J J, et al. New technical progress of the manufacture of inulin[J]. Chemical Industry and Engineering Progress, 2008, 27(10): 1522-1532. | 21 | 张琳, 安载学, 张维东, 等. 菊芋的生物学特性与开发潜力研究进展[J]. 现代农业科技, 2015(13): 87-88. | 21 | ZHANG L, AN Z X, ZHANG W D, et al. Research advance on biological characteristics and development potential of Helianthus tuberosus L.[J]. Modern Agricultural Science and Technology Periodical, 2015(13): 87-88. | 22 | 孔涛, 吴祥云. 菊芋中菊糖提取及果糖制备研究进展[J]. 食品工业科技, 2013, 34(18): 375-382. | 22 | KONG T, WU X Y. Research progress in inulin extraction and fructose production in Jerusalem artichoke[J]. Science and Technology of Food Industry, 2013, 34(18): 375-382. | 23 | 袁文杰, 任剑刚, 赵心清, 等. 一步法发酵菊芋生产乙醇[J]. 生物工程学报, 2008, 24(11): 1931-1936. | 23 | YUAN W J, REN J G, ZHAO X Q, et al. One-step ethanol fermentation with Kluyveromyces marxianus YX01 from Jerusalem artichoke[J]. Chinese Journal of Biotechnology, 2008, 24(11): 1931-1936. | 24 | 汪伦记, 董英. 以菊芋粉为原料同步糖化发酵生产燃料乙醇[J]. 农业工程学报, 2009, 25(11): 263-268. | 24 | WANG L J, DONG Y. Production of ethanol by simultaneous saccharification and fermentation from Jerusalem artichoke flour[J]. Transactions of the CSAE, 2009, 25(11): 263-268. | 25 | 刘德龙, 张玉苍, 何连芳, 等. 生物转化法生产2,3-丁二醇的研究进展[J]. 农业机械, 2011(6): 143-147. | 25 | LIU D L, ZHANG Y C, HE L F, et al. Research progress of 2,3-butanediol with biotransformation[J]. Journal of Agricultural Machinery, 2011(6): 143-147. | 26 | 赵宗保, 华艳艳, 刘波, 等. 中国如何突破生物柴油产业的原料瓶颈[J]. 中国生物工程杂志, 2005, 25(11): 1-6. | 26 | ZHAO Z B, HUA Y Y, LIU B, et al. How to secure triacylglycerol supply for chinese biodiesel industry[J]. China Biotechnology, 2005, 25(11): 1-6. | 27 | 贾彬, 王亚南, 何蔚红, 等. 生物柴油新原料——微生物油脂[J]. 生物技术通报, 2014(1): 19-26. | 27 | JIA B, WANG Y N, HE W H, et al. New biodiesel raw material: microbial lipid[J]. Biotechnology Bulletin, 2014(1): 19-26. | 28 | 华艳艳, 赵鑫, 赵金, 等. 圆红冬孢酵母发酵菊芋块茎产油脂的研究[J]. 中国生物工程杂志, 2007, 27(10): 59-63. | 28 | HUA Y Y, ZHAO X, ZHAO J, et al. Lipid production by Rhodosporidium toruloides using Jerusalem artichoke tubers[J]. China Biotechnology, 2007, 27(10): 59-63. | 29 | 朱豫, 曹海龙, 岳敏, 等. 以菊芋为原料发酵生产甘露醇的研究[J]. 西北农业学报, 2009, 18(5): 135-141, 175. | 29 | ZHU Y, CAO H L, YUE M, et al. The primary study of production of mannitol from saccharified Jerusalem artichoke juice with several lactic acid bacteria[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(5): 135-141, 175. | 30 | 胡军宏, 廖成军, 毛宝兴. 采用雷尼镍与雷尼铜协同催化加氢生产甘露醇的方法: CN102584534 B[P]. 2014-02-19. | 30 | HU J H, LIAO C J, MAO B X. Production of mannitol by co-catalytic hydrogenation of Raney nickel and Raney copper: CN102584534 B[P]. 2014-02-19. | 31 | HEINEN A W, PETERS J A, BEKKUM H VAN. Hydrogenation of fructose on Ru/C catalysts[J]. Carbohydrate Research, 2000, 328(4): 449-457. | 32 | HEINEN A W, PETERS J A, BEKKUM H VAN. The combined hydrolysis and hydrogenation of inulin catalyzed by bifunctional Ru/C[J]. Carbohydrate Research, 2001, 330(3): 381-390. | 33 | KUUSISTO J, MIKKOLA J P, CASAL P P, et al. Kinetics of the catalytic hydrogenation of D-fructose over a CuO-ZnO catalyst[J]. Chemical Engineering Journal, 2005, 115(1/2): 93-102. | 34 | MAKKEE M, KIEBOOM A P G, BEKKUM H VAN, et al. Production methods of D-mannitol[J]. Starch-St?rke, 1985, 37(4): 136-141. | 35 | MAKKEE M, KIEBOOM A P G, BEKKUM H VAN, et al. Hydrogenation of D-fructose and D-fructosed/D-glucose mixtures[J]. Carbohydrate Research, 1985, 138(2): 225-236. | 36 | ZHENG M Y, WANG A Q, JI N, et al. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66. | 37 | WANG A Q, ZHANG T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts[J]. Accounts of Chemical Research, 2013, 46(7): 1377-1386. | 38 | 欧阳四余, 徐琼, 伏再辉, 等. 生物质转化制5-羟甲基糠醛的酸催化研究新进展[J]. 化工进展, 2014, 33(5): 1077-1107. | 38 | OUYANG S Y, XU Q, FU Z H, et al. Advances in production of 5-hydroxymethylfurfural from biomass by acid catalysis[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1077-1107. | 39 | HUBER G W, CHHEDA J N, BARRETT C J, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450. | 40 | PEREZ G P, MUKHERJEE A, DUMONT M J, et al. Insights into HMF catalysis[J]. Journal of Industrial and Engineering Chemistry, 2019, 70: 1-34. | 41 | ROSATELLA A A, SIMEONOV S P, FRADE R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 13(4): 754-793. | 42 | WANG F F, WU H Z, LIU C L, et al. Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent[J]. Carbohydrate Research, 2013, 368: 78-83. | 43 | 姜楠, 谢楠, 齐崴, 等. 硫酸催化葡萄糖制备乙酰丙酸的过程强化[J]. 化工进展, 2014, 33(11): 2888-2893. | 43 | JIANG N, XIE N, QI W, et al. Process intensification of levulinic acid from glucose using sulfuric acid as catalyst[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2888-2893. | 44 | SHIMIZU K I, UOZUMI R, SATSUMA A. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods[J]. Catalysis Communications, 2009, 10(14): 1849-1853. | 45 | BENVENUTI F, CARLINI C, PATRONO P, et al. Heterogeneous zirconium and titanium catalysts for theselective synthesis of 5-hydroxymethyl-2-furaldeyde from carbohydrates[J]. Applied Catalysis A: General, 2000, 193(1/2): 147-153. | 46 | ROMáN-LESHKOV Y, CHHEDA J N, DUMESIC J A, et al. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science, 2006, 312(5782): 1933-1937. | 47 | YONG G, ZHANG Y, YING J Y. Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose[J]. Angewandte Chemie International Edition, 2008, 47(48): 9345-9348. | 48 | ANTONETTI C, MELLONI M, LICURSI D, et al. Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts[J]. Applied Catalysis B: Environmental, 2017, 206: 364-377. | 49 | YANG F L, LIU Q S, BAI X F, et al. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst[J]. Bioresource Technology, 2011, 102(3): 3424-3429. | 50 | DENG T S, LI J G, YANG Q Q, et al. A selective and economic carbon catalyst from waste for aqueous conversion of fructose into 5-hydroxymethylfurfural[J]. RSC Advances, 2016, 6(36): 30160-30165. | 51 | SEO Y H, HAN J I. Direct conversion from Jerusalem artichoke to hydroxymethylfurfural (HMF) using the fenton reaction[J]. Food Chemistry, 2014, 151: 207-211. | 52 | 李陆杨, 朱林峰, 漆新华. 生物质及其衍生糖类制备乳酸的研究进展[J]. 农业资源与环境学报, 2017, 34(4): 309-318. | 52 | LI L Y, ZHU L F, QI X H, et al. Research progress of lactic acid production from biomass and its derived carbohydrates[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 309-318. | 53 | DE CLIPPEL F, DUSSELIER M, ROMPAEY R VAN, et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts[J]. Journal of the American Chemical Society, 2012, 134(24): 10089-10101. | 54 | LEI X, WANG F F, LIU C L, et al. One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst[J]. Applied Catalysis A: General, 2014, 482: 78-83. | 55 | BAE J H, KIM H J, KIM M J, et al. Direct fermentation of Jerusalem artichoke tuber powder for production of L-lactic acid and D-lactic acid by metabolically engineered Kluyveromyces marxianus[J]. Journal of Biotechnology, 2018, 266: 27-33. | 56 | LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angewandte Chemie International Edition, 2012, 51(13): 3249-3253. | 57 | PANG J F, ZHENG M Y, WANG A Q, et al. Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6601-6608. | 58 | LI M, WANG J, YANG Y Z, et al. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem[J]. Bioresource Technology, 2016, 208: 31-41. | 59 | ZHANG L, XU C, CHAMPAGNE P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management, 2010, 51(5): 969-982. | 60 | CHIO C, SAIN M, QIN W S. Lignin utilization: a review of lignin depolymerization from various aspects[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 232-249. |
|