1 | OERKE E C. Crop losses to pests[J]. Journal of Agricultural Science, 2006, 144 (1): 31-43. | 2 | HONG S W, ZHAO L Y, ZHU H P. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses[J]. Atmospheric Environment, 2018, 175: 109-119. | 3 | ZWERTVAEGHER I K, VERHAEGHE M, BRUSSELMAN E, et al. The impact and retention of spray droplets on a horizontal hydrophobic surface[J]. Biosystems Engineering, 2014, 126: 82-91. | 4 | 曾爱军. 减少农药雾滴飘移的技术研究[D]. 北京: 中国农业大学, 2005. | 4 | ZENG A J. Research on technique to reduce spray droplets drift[D]. Beijing: China Agricultural University, 2005. | 5 | CUNHA J P, CHUECA P, GARCERá C, et al. Risk assessment of pesticide spray drift from citrus applications with air-blast sprayers in Spain[J]. Crop Protection, 2012, 42: 116-123. | 6 | BUTLER ELLIS M C, LANE A G, O’SULLIVAN C M, et al. Bystander exposure to pesticide spray drift: new data for model development and validation[J]. Biosystems Engineering, 2010, 107(3): 162-168. | 7 | 金涌, 罗志波, 胡山鹰, 等. “第六产业”发展及其化工技术支撑[J]. 化工进展, 2017, 36(4): 1155-1164. | 7 | JIN Y, LUO Z B, HU S Y, et al. Development of the “Sixth Industry” and its support by chemical technology[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1155-1164. | 8 | TORRENT X, GARCERA C, MOLTO E, et al. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part Ⅰ. Effects on wind tunnel and field spray drift[J]. Crop Protection, 2017, 96: 130-143. | 9 | GIL Y, SINFORT C. Emission of pesticides to the air during sprayer application: a bibliographic review[J]. Atmospheric Environment, 2005, 39(28): 5183-5193. | 10 | HILZ E, VERMEER A W P. Spray drift review: the extent to which a formulation can contribute to spray drift reduction[J]. Crop Protection, 2013, 44: 75-83. | 11 | FELSOT A S, UNSWORTH J B, LINDERS J B H J, et al. Agrochemical spray drift; assessment and mitigation—A review[J]. Journal of Environmental Science and Health, Part B, 2010, 46(1): 1-23. | 12 | SALYANI M, MILLER D R, FAROOQ M, SWEEB R D. Effects of sprayer operating parameters on airborne drift from citrus air-carrier sprayers[J]. Agricultural Engineering International: CIGR Journal, 2013, 15: 27-36. | 13 | LE?NIK M, STAJNKO D, VAJS S. Interactions between spray drift and sprayer travel speed in two different apple orchard training systems[J]. International Journal of Environmental Science and Technology, 2015, 12(9): 3017-3028. | 14 | MILLER D R, STOUGHTON T E, STEINKE W E, et al. Atmospheric stability effects on pesticide drift from an irrigated orchard[J]. Transactions of the ASAE, 2000, 43(5): 1057. | 15 | 邓坤学, 黄启谷. 农药用表面活性剂研究进展[J]. 化工进展, 2009, 28(12): 2199-2204. | 15 | DENG K X,HUANG Q G. Advances in agrochemical surfactants[J]. Chemical Industry and Engineering Progress, 2009, 28(12): 2199-2204. | 16 | FRANCA J A L, CUNHA J P, ANTUNIASSI U R. Spectrum, velocity and drift of droplets sprayed by nozzles with and without air induction and mineral oil[J]. Engenharia Agrícola, 2017, 37(3): 502-509. | 17 | ENDALEW A M, HERTOG M, DELELE M A, et al. CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture[J]. International Journal of Heat and Fluid Flow, 2009, 30(2): 356-368. | 18 | FAROOQ M, BALACHANDAR R, WOLF T. Assessment of an agricultural spray in a none-uniform cross-flow[J]. Transactions of the ASAE, 2001, 44(6): 1455. | 19 | DORR G J, HEWITT A J, ADKINS S W, et al. A comparison of initial spray characteristics produced by agricultural nozzles[J]. Crop Protection, 2013, 53(Supplement C): 109-117. | 20 | FERGUSON J C, O'DONNELL C C, CHAUHAN B S, et al. Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel[J]. Crop Protection, 2015, 76: 1-6. | 21 | NUYTTENS D, TAYLOR W A, DE SCHAMPHELEIRE M, et al. Influence of nozzle type and size on drift potential by means of different wind tunnel evaluation methods[J]. Biosystems Engineering, 2009, 103(3): 271-280. | 22 | WOLTERS A, LINNEMANN V, DE ZANDE J C VAN, et al. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop[J]. Science of the Total Environment, 2008, 405(1): 269-277. | 23 | BALSARI P, GIL E, MARUCCO P, et al. Field-crop-sprayer potential drift measured using test bench: effects of boom height and nozzle type[J]. Biosystems Engineering, 2017, 154: 3-13. | 24 | BUENO M R, CUNHA J P, DE SANTANA D G. Assessment of spray drift from pesticide applications in soybean crops[J]. Biosystems Engineering, 2017, 154: 35-45. | 25 | SIDAHMED M M, AWADALLA H H, HAIDAR M A. Symmetrical multi-foil shields for reducing spray drift[J]. Biosystems Engineering, 2004, 88(3): 305-312. | 26 | TSAY J E, OZKAN H E, BRAZEE R, et al. CFD simulation of moving spray shields[J]. Transactions of the ASAE, 2002, 45(1): 21. | 27 | ZHANG B, TANG Q, CHEN L P, et al. Numerical simulation of spray drift and deposition from a crop spraying aircraft using a CFD approach[J]. Biosystems Engineering, 2018, 166: 184-199. | 28 | XU L Y, ZHU H P, OZKAN H E, et al. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants[J]. Pest Management Science, 2011, 67(7): 842-851. | 29 | ZHOU Z L, CAO C, CAO L D, et al. Research advances of droplet evaporation on different interfaces and the efficiency of pesticide utilization[J]. Chinese Journal of Pesticide Science, 2017, 19(1): 9-17. | 30 | WANG S J, WANG H J, LI T, et al. Dynamic spreading process of pesticide droplets impacting onto target leaf surfaces[J]. Bangladesh Journal of Botany, 2016, 45(3): 631-640. | 31 | QUAN S P, SCHMIDT D P. Direct numerical study of a liquid droplet impulsively accelerated by gaseous flow[J]. Physics of Fluids, 2006, 18(10): 102-103. | 32 | QU Q L, MA P C, LIU P Q, et al. Numerical study of transient deformation and drag characteristics of a decelerating droplet[C]// 45th AIAA Fluid Dynamics Conference, 2015. | 33 | HOLTERMAN H J. Kinetics and evaporation of water drops in air[M]. Wageningen: IMAG, 2003. | 34 | NUYTTENS D, BAETENS K, DE SCHAMPHELEIRE M, et al. Effect of nozzle type, size and pressure on spray droplet characteristics[J]. Biosystems Engineering, 2007, 97(3): 333-345. | 35 | 王波, 宋坚利, 曾爱军, 等. 剂型及表面活性剂对农药药液在植物叶片上铺展行为的影响[J]. 农药学学报, 2012 (3): 334-340. | 35 | WANG B, SONG J L, ZENG A J, et al. Effects of formulations and surfactants on the behavior of pesticide liquid spreading in the plant leaves[J]. Chinese Journal of Pesticide Science, 2012 (3): 334-340. | 36 | 张文君. 农药雾滴雾化与在玉米植株上的沉积特性研究[D]. 北京: 中国农业大学, 2014. | 36 | ZHANG W J. The study of pesticide droplets atomization and deposition characteristics in corn leaves[D]. Beijing: China Agricultural University, 2014. | 37 | 杨威, 贾明, 孙凯, 等. 液滴在连续气流作用下的变形与破碎[J]. 内燃机学报, 2018, 36(3): 230-236. | 37 | YANG W, JIA M, SUN K, et al. Droplet deformation and breakup in a continuous gas flow[J]. Transactions of CSICE, 2018, 36(3): 230-236. |
|