1 | 陈巧丽. 微尺度下液体流动、传热特性及其应用研究[D]. 杭州: 浙江大学, 2016. | 1 | CHEN Qiaoli. Investigation on liquid flow, heat transfer characteristics in microscale and its applications[D]. Hangzhou: Zhejiang University, 2016. | 2 | 刘刚, 吴玉庭, 雷标, 等. 电子芯片冷却用微型制冷系统实验研究[J]. 制冷学报, 2014, 35(6): 85-89. | 2 | LIU Gang, WU Yuting, LEI Biao, et al. Experimental study on a miniature refrigeration systemfor electronics cooling[J]. Journal of Refrigeration, 2014, 35(6): 85-89. | 3 | 李志宏. 微纳机电系统(MEMS/NEMS)前沿[J]. 中国科学: 信息科学, 2012, 42(12): 1599-1615. | 3 | LI Zhihong. Frontier of micro-electro-mechanical system[J]. Scientia Sinica Informationis, 2012, 42(12): 1599-1561. | 4 | YANG Yue-Tzu, TSAI Kuo-Teng, WANG Yi-Hsien, et al. Numerical study of microchannel heat sink performance using nanofluids[J]. International Communications in Heat and Mass Transfer, 2014, 57(27): 26-35. | 5 | JASPERSON B A, JEON Y, TURNER K T, et al. Comparison of micro-pin-fin and microchannel heat sinks considering thermal-hydraulic performance and manufacturability[J]. Components and Packaging Technologies, 2010, 33(1): 148-160. | 6 | 李林林, 张吉礼. 电解制氧槽试件微柱群单相流场PIV测试[J]. 哈尔滨工业大学学报, 2008, 40(8): 1222-1226. | 6 | LI Linlin, ZHANG Jili. Experimental study on single-phase flow field of micro-square cylinder group in oxygen generation sample by PIV technique[J]. Journal of Harbin Institude of Technology. 2008, 40(8): 1222-1226. | 7 | NAGRATH S, SEQUIST L V, MAHESWARAN S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology[J]. Nature, 2007, 450: 1235-1241. | 8 | 娄心洋. 微凸台阵列型醇类制氢微反应器传热与流动特性研究[D]. 杭州: 浙江大学, 2014. | 8 | LOU Xinyang. Research on the performance of heat transfer and flow characteristics in the micro-reactor with micro-pin-fin arrays for hydrogen production from alcohol[D]. Hangzhou: Zhejiang University, 2014. | 9 | STRAUB J. Boiling heat transfer and bubble dynamics in microgravity[J]. Advances in Heat Transfer, 2001, 35: 57-172. | 10 | 葛琪林, 柳建华, 张良, 等. 微通道换热研究进展综述[J]. 制冷技术, 2012, 40(9): 76-79. | 10 | GE Qilin, LIU Jianhua, ZHANG Liang, et al. Review on study of heat exchanging in microchannels[J]. Refrigeration, 2012, 40(9): 76-79. | 11 | 周云龙, 孙振国. 基于两相流的微通道冷却技术研究进展及展望[J]. 热能动力工程, 2016, 31(7): 1-6. | 11 | ZHOU Yunlong, SUN Zhenguo. Research progress and prospect of microchannel cooling technology based on two-phase flow[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(7): 1-6. | 12 | 张鹏, 付鑫, 王如竹. 微通道内流动沸腾的研究进展[J]. 制冷学报, 2009, 30(2): 1-7. | 12 | ZHANG Peng, FU Xin, WANG Ruzhu. Review on flow boiling in micro-channels[J]. Journal of Refrigeration, 2009, 30(2): 1-7. | 13 | ABDOLLAHI A, SHARMA R N, VATANI A. Fluid flow and heat transfer of liquid-liquid two phase flow in microchannels: a review[J]. International Communications in Heat and Mass Transfer, 2017, 84: 66-74. | 14 | 张承武, 浦龙梅, 姜桂林, 等. 不同截面形状微肋片内流动阻力特性[J]. 化工学报, 2014, 65(6): 2042-2048. | 14 | ZHANG Chengwu, PU Longmei, JIANG Guilin, et al. Resistance characteristics of micro pin fins with different cross-section shapes[J]. CIESC Journal, 2014, 65(6): 2042-2048. | 15 | KOSAR A, MISHRA C, PELES Y. Laminar flow across a bank of low aspect ratio micro pin fins[J]. Journal of Fluids Engineering, 2005, 127: 419-430. | 16 | LIU Zhigang, GUAN Ning, ZHANG Chengwu, et al. The flow resistance and heat transfer characteristics of micro pin-fins with different cross-sectional shapes[J]. Nanoscale and Microscale Thermophysical Engineering, 2015, 19: 221-243. | 17 | HUA Junye, LI Gui, ZHAO Xiaobao, et al. Study on the flow resistance performance of fluid cross various shapes of micro-scale pin fin[J]. Applied Thermal Engineering, 2016, 107: 768-775. | 18 | HUANG Liang, LI Qingling, ZHAI Hongyan. Experimental study of heat transfer performance of a tube with different shaped pin fins[J]. Applied Thermal Engineering, 2018, 129: 1325-1332. | 19 | WANG Peng, CHEN Liang. Thermal and hydraulic performance of micro pin fin heat sinks with different pin fin shapes[C/OL]// IOP Conference Series: Materials Science and Engineering, The 6th International Conference on Mechanical Engineering, Materials Science and Civil Engineering, Xiamen, China, 2019, 542: 012053. . | 20 | 张秀强, 华君叶, 赵孝保, 等. 不同形状微针肋通道流动与换热性能影响研究[J]. 南京师范大学学报(工程技术版), 2018, 18(1): 47-53. | 20 | ZHANG Xiuqiang, HUA Junye, ZHAO Xiaobao, et al. Study on the flow and heat-transfer properties of microchannel heat sink with different pin-fin shapes[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2018, 18(1): 47-53. | 21 | AMBREEN T, SALEEM A, PARK Cheol Woo. Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections[J]. Applied Thermal Engineering, 2019, 158: 1-15. | 22 | ZHANG Leigang, SHI Juan, XU Bo, et al. Influences of pin geometry and inclination angle on condensation heat transfer performance of elliptical pin-fin surface[J]. Microgravity Science and Technology, 2018, 30: 965-975. | 23 | LI Ping, LUO Yaoyuan, ZHANG Di, et al. Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin[J]. International Journal of Heat and Mass Transfer, 2018, 119: 152-162. | 24 | CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[C]//1995 ASME International Mechanical Engineering Congress and Exhibition, San Francisco, CA (United States), 1995, 231: 99-105. | 25 | 解国珍, 褚伟鹏, 王刚, 等. 添加纳米粒子的溴化锂溶液传质特性[J]. 制冷学报, 2016, 37(4): 33-35. | 25 | XIE Guozhen, CHU Weipeng, WANG Gang, et al. Mass transfer characteristics of LiBr-aqueous solution added nano-particles[J]. Journal of Refrigeration, 2016, 37(4): 33-35. | 26 | 张树杨. 纳米流体强化气液传质研究[D]. 天津: 天津大学, 2010. | 26 | ZHANG Shuyang. Study of gas-liquid mass transfer enhanced by nanofluids[D]. Tianjin: Tianjin University, 2010. | 27 | ZAHRADNIK J, KUNCOVA G, FIALOVA M. The effect of surface active additives on bubble coalescence and gas holdup in viscous acrated batches[J]. Chemical Engineering Science, 1999, 54: 2401-2408. | 28 | KLUY J H J, WACHEM B G M V, KUSTER B F M, et al. Mass transfer in sparged and stirred reactors: influence of carbon particles and electrolyte[J]. Chemical Engineering Science, 2003, 58: 4719-4728. | 29 | ZHOU Mingzheng, XIA Guodong, CHAI Lei, et al. Analysis of flow and heat transfer characteristics of micro-pin fin heat sink using silver nanofluids[J]. Science China Technological Sciences, 2012, 55: 155-162. | 30 | SEYF H R, FEIZBAKHSHI M. Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-?n heat sinks[J]. International Journal of Thermal Sciences, 2012, 58: 168-179. | 31 | HASAN M I. Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid[J]. Applied Thermal Engineering, 2014, 63: 598-607. | 32 | RAJAB H, YIN D, MA H B. Effects of Al2O3-Water nanofluid and angular orientation on entropy generation and convective heat transfer of an ellipitical micro-pin-fin heat sink[C]//HAINK C Tu, RANNOW Michael B. Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, Canada, 2014: 1-12. | 33 | DUANTHONGSUK W, WONGWISES S. An experimental study on the thermal and hydraulic performances of nanofluids flow in a miniature circular pin ?n heat sink[J]. Experimental Thermal and Fluid Science, 2015, 66: 28-35. | 34 | AMBREEN T, KIM Man Hoe. Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks[J]. International Journal of Heat and Mass Transfer, 2018, 126: 245-256. | 35 | ALIABADI M K, DELDAR S, HASSANI S M. Effects of pin-fins geometry and nanofluid on the performance of a pin-?n miniature heat sink (PFMHS)[J]. International Journal of Mechanical Sciences, 2018, 148: 442-458. | 36 | GUO Wenwen, LI Guoneng, ZHENG Youqu, et al. Numerical study of nanofluids thermal and hydraulic characteristics considering Brownian motion effect in micro ?n heat sink[J]. Journal of Molecular Liquids, 2018, 264: 38-47. | 37 | BANU P S A, KRISHNAN A, SHAFEE S M, et al. Numerical investigation of micro-pin-fin heat exchanger using nanofluids[J]. Materials Today: Proceedings, 2020, 22(3): 1020-1025. | 38 | AMBREEN T, SALEEM A, PARK Cheol Woo. Numerical analysis of the heat transfer and fluid flow characteristics of a nanofluid-cooled micropin-fin heat sink using the Eulerian-Lagrangian approach[J]. Powder Technology, 2019, 345: 509-520. | 39 | ZHANG Xinrui, MENG Guangfan, WANG Zhaoliang. Experimental study on flow and heat transfer characteristics of SiC-water nanofluids in micro-cylinder-groups[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118971. | 40 | 陈晨, 彭浩. 石墨烯纳米流体相变材料蓄冷特性数值模拟[J]. 化工进展, 2018, 37(2): 681-688. | 40 | CHEN Chen, PENG Hao. Numerical simulation of solidification characteristics of graphene nanofluid as phase change material[J]. Chemical Industry and Engineering Progeress, 2018, 37(2): 681-688. | 41 | 谢红梅, 蒋斌, 戴甲洪, 等. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74. | 41 | XIE Hongmei, JIANG Bin, DAI Jiahong, et al. Tribological behaviors of graphene and graphene oxide as water-based lubricant additives for magnesium alloy cold rolling[J]. Journal of Materials Engineering,2020, 48(3): 66-74. | 42 | 周逸, 林鸿, 冯晓娟, 等. 石墨烯及其复合材料热导率测量的研究进展[J]. 计量学报, 2020, 41(2): 160-169. | 42 | ZHOU Yi, LIN Hong, FENG Xiaojuan, et al. Research the progresses on measurement of thermal conductivity of graphene and graphene’s composites[J]. Acta Metrologica Sinica, 2020, 41(2): 160-169. | 43 | SADRI R, HOSSEINI M, KAZI S N, et al. Study of environmently friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer[J]. Energy Convers. Manage, 2017, 150: 26-36. | 44 | BAHIRAEI M, HESHMATIAN S, GOODARZI M, et al. CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin ?n heat sink for cooling of electronic components: effect of different configurations[J]. Advanced Powder Technology, 2019, 30: 2503-2516. | 45 | 黄浩. 纳米金刚石和石墨烯的表面修饰及其电泳行为研究[D]. 秦皇岛: 燕山大学, 2012. | 45 | HUANG Hao. Study on surface modification and electrophoresis behavior for nanodiamond and graphene[D]. Qinhuangdao: Yanshan University, 2012. | 46 | 王琳琳. 多层次复合微纳表面结构超汽化强化换热实验研究[D]. 合肥: 中国科学技术大学, 2019. | 46 | WANG Linlin. Experimental investigation on behavior of subcooled boiling heat transfer enhancement by multi-layered micro/nano structured surface[D]. Hefei: University of Science and Technology of China, 2019. | 47 | KOSAR A, PELES Y. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2007, 50: 1018-1034. | 48 | LIE Y M, KE J H, CHANG Wen Ruey, et al. Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-?nned silicon chip[J]. International Journal of Heat and Mass Transfer, 2007, 50: 3862-3876. | 49 | KRISHNAMURTHY S, PELES Y. Flow boiling of water in a circular staggered micro-pin ?n heat sink[J]. International Journal of Heat and Mass Transfer2008, 51: 1349-1364. | 50 | CHANG Wen Ruey, CHEN Chang’an, KE J H, et al. Subcooled flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip[J]. International Journal of Heat and Mass Transfer, 2010, 53: 5605-5621. | 51 | REESER A, BAR-COHEN A, HETSRONI. High quality flow boiling heat transfer and pressure drop in microgap pin fin arrays[J]. International Journal of Heat and Mass Transfer, 2014, 78: 974-985. | 52 | 郭保仓. 微通道流动沸腾压降与换热特性研究[D]. 保定: 华北电力大学, 2017. | 52 | GUO Baocang. Experimental study on pressure drop and heat transfer characteristics of microchannel flow boiling[D]. Baoding: North China Electric Power University, 2017. | 53 | FALSETTI C, JAFARPOORCHEKAB M, MAGNINI M, et al. Two-phase operational maps, pressure drop, and heat transfer for flow boiling of R236fa in a micro-pin fin evaporator[J]. International Journal of Heat and Mass Transfer, 2017, 107: 805-819. | 54 | ZHANG Yonghai, LIU Bin, ZHAO Jianfu, et al. Experimental study of subcooled flow boiling heat transfer on micro-pin-?nned surfaces in short-term microgravity[J]. Experimental Thermal and Fluid Science, 2018, 97: 417-430. | 55 | ZHANG Yonghai, ZHOU Jie, ZHOU Wenjing, et al. CHF correlation of boiling in FC-72 with micro-pin-fins for electronics cooling[J]. Applied Thermal Engineering, 2018, 138(46): 494-500. | 56 | ZHANG Yonghai, LIU Bin, WEI Jinjia, et al. Heat transfer correlations for jet impingement boiling over micro-pin-finned surface[J]. International Journal of Heat and Mass Transfer, 2018, 126: 401-413. | 57 | ZHOU Jie, ZHANG Yonghai, WEI Jinjia. A modi?ed bubble dynamics model for predicting bubble departure diameter on micro-pin-?nned surfaces under microgravity[J]. Applied Thermal Engineering, 2018, 132: 450-462. | 58 | KONG Lingjian, LIU Zhigang, JIA Lei, et al. Experimental study on flow and heat transfer characteristics at onset of nucleate boiling in micro pin fin heat sinks[J]. Experimental Thermal and Fluid Science, 2020, 115: 109946. | 59 | ZHOU Jie, QI Baojin, ZHANG Baojin, et al. Experimental and theoretical study of bubble coalescence and departure behaviors during nucleate pool boiling on uniform smooth and micro-pin-?nned surfaces under different subcoolings and heat fluxes[J]. Experimental Thermal and Fluid Science, 2020, 112: 1-10. | 60 | SATO T, MATSUMURA, MATSUMURA H. On the conditions of incipient subcooled-boiling with forced convection[J]. Bulletin of JSME, 1964, 7(26): 392-398. | 61 | JUNG Ki Moon, Joon Lee HEE. Two phase pressure drop and boiling heat transfer in micro pin fin channel[C]// ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, 2016: ICNMM2016-7915, V001T04A001. | 62 | QU Weilin, SIU-HO A. Measurement and prediction of pressure drop in a two-phase micro-pin-fin heat sink[J]. International Journal of Heat and Mass Transfer, 2009, 52(21/22): 5173-5184. | 63 | JENSEN M K, HSU J T. A parametric study of boiling heat transfer in a horizontal tube bundle[J]. Journal of Heat Transfer, 1988, 110(4a): 976-981. | 64 | MCNEIL D A, RAEISI A H, KEW P A, et al. A comparison of flow boiling heat-transfer in in-line mini pin fin and plane channel flows[J]. Applied Thermal Engineering, 2010, 30: 2412-2425. | 65 | 李慧君, 郭保仓, 杜保周, 等. 微柱群通道内饱和沸腾换热特性实验研究[J]. 制冷学报, 2018, 39(3): 44-49. | 65 | LI Huijun, GUO Baocang, DU Baozhou, et al. Experimental study of saturated flow boiling heat transfer in an array of micro-pin-fins[J]. Journal of Refrigeration, 2018, 39(3): 44-49. | 66 | LIAO Wun-Rong, CHIEN Liang-Han, GHALAMBAZ M, et al. Experimental study of boiling heat transfer in a microchannel with nucleated-shape columnar micro-pin-fins[J]. International Communications in Heat and Mass Transfer, 2019, 108(35): 01-11. | 67 | XUE Yanfang, YUAN Minzhe, MA Aixiang, et al. Enhanced boiling heat transfer by using micro-pin-finned surface in three different test systems[J]. Heat Transfer Engineering, 2011, 32: 1062-1068. | 68 | DENG Daxiang, WAN Wei, QIN Yu, et al. Flow boiling enhancement of structured microchannels with micro pin fins[J]. International Journal of Heat and Mass Transfer, 2017, 105(56): 338-349. | 69 | CAO Zhen, LIU Bin, PREGER C, et al. Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1019-1033. | 70 | RAHMAN M M, OLCEROGLU E, CARTHY M C. Role of wickability on the critical heat flux of structered superhydrophilic surfaces[J]. Langmuir, 2014, 30: 11225-11234. | 71 | 雷雨川, 陈振乾. 微重力下三角形微通道内冷凝换热分析[J]. 空间科学学报, 2018, 38(3): 368-372. | 71 | LEI Yuchuan, CHEN Zhenqian. Analysis of condensation heat transfer in curved triangle microchannel under microgravity[J]. Chinese Journal of Space Science, 2018, 38(3): 368-372. | 72 | 易天浩, 陈超越, 雷作胜, 等. 微重力池沸腾中的气泡和传热行为数值模拟[J]. 空间科学学报, 2019, 39(4): 469-477. | 72 | YI Tianhao, CHEN Chaoyue, LEI Zuosheng, et al. Numerical simusation of bubble dynamics and heat transfer during pooling boiling in microgravity[J] Chinese Journal of Space Science, 2019, 39(4): 469-477. | 73 | 薛艳芳, 魏进家, 赵建福, 等. 微重力下微结构表面强化沸腾换热研究[J]. 工程热物理学报, 2012, 33(3): 441-444. | 73 | XUE Yanfang, WEI Jinjia, ZHAO Jianfu, et al. Boiling heat transfer enhancement by using micro-structure surface under microgravity[J]. Journal of Engineering Thermophysics, 2012, 33(3): 441-444. | 74 | 齐宝金, 魏进家, 王雪丽, 等. 微重力下加热面尺寸对气泡动力学行为的影响[J]. 空间科学学报, 2017, 37(4): 455-467. | 74 | QI Baojin, WEI Jinjia, WANG Xueli, et al. Influence of chip size on bubble dynamic behavior in microgravity[J]. Chinese Journal of Space Science, 2017, 37(4): 455-467. | 75 | 张永海, 薛艳芳, 魏进家, 等. 微重力下微结构表面池沸腾气泡动力学研究[J] 工程热物理学报, 2013, 34(11): 2112-2115. | 75 | ZHANG Yonghai, XUE Yanfang, WEI Jinjia, et al. Pooling boilng heat transfer and bubble dynamics over micro-pin-finned surface under microgravity[J]. Journal of Engineering Thermophysics, 2013, 34(11): 2112-2115. | 76 | 魏进家, 刘斌, 张永海. 常/微重力下微结构表面强化沸腾换热研究进展[J]. 化工进展, 2019, 38(1): 14-29. | 76 | WEI Jinjia, LIU Bin, ZHANG Yonghai. Progress in enhanced boiling heat transfer over microstructured surfaces under normal/microgravity[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 14-29. | 77 | ZHANG Yonghai, WEI Jinjia, XUE Yanfang, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Applied Thermal Engineering, 2014, 70(1): 172-182. | 78 | QI Baojin, WEI Jinjia, WANG Xueli, et al. Influences of wake-effects on bubble dynamics by utilizing micro-pin-finned surfaces under microgravity[J]. Applied Thermal Engineering, 2017, 113(35): 1332-1344. |
|